Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emp...Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat.展开更多
Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies s...Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies simultaneously.In this study,an innovative hybrid gradient vector fields for path-following guidance(HGVFs-PFG)algorithm is proposed to control fixed-wing UAVs to follow a generated guidance path and oriented target curves in three-dimensional space,which can be any combination of straight lines,arcs,and helixes as motion primitives.The algorithm aids the creation of vector fields(VFs)for these motion primitives as well as the design of an effective switching strategy to ensure that only one VF is activated at any time to ensure that the complex paths are followed completely.The strategies designed in earlier studies have flaws that prevent the UAV from following arcs that make its turning angle too large.The proposed switching strategy solves this problem by introducing the concept of the virtual way-points.Finally,the performance of the HGVFs-PFG algorithm is verified using a reducedorder autopilot and four representative simulation scenarios.The simulation considers the constraints of the aircraft,and its results indicate that the algorithm performs well in following both lateral and longitudinal control,particularly for curved paths.In general,the proposed technical method is practical and competitive.展开更多
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China under Grant No.62076204 and Grant No.61612385in part by the Postdoctoral Science Foundation of China under Grants No.2021M700337in part by the Fundamental Research Funds for the Central Universities under Grant No.3102019ZX016.
文摘Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat.
基金the support of the National Natural Science Foundation of China under Grant No.62076204 and Grant No.62006193in part by the Postdoctoral Science Foundation of China under Grants No.2021M700337in part by the Fundamental Research Funds for the Central Universities under Grant No.3102019ZX016。
文摘Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies simultaneously.In this study,an innovative hybrid gradient vector fields for path-following guidance(HGVFs-PFG)algorithm is proposed to control fixed-wing UAVs to follow a generated guidance path and oriented target curves in three-dimensional space,which can be any combination of straight lines,arcs,and helixes as motion primitives.The algorithm aids the creation of vector fields(VFs)for these motion primitives as well as the design of an effective switching strategy to ensure that only one VF is activated at any time to ensure that the complex paths are followed completely.The strategies designed in earlier studies have flaws that prevent the UAV from following arcs that make its turning angle too large.The proposed switching strategy solves this problem by introducing the concept of the virtual way-points.Finally,the performance of the HGVFs-PFG algorithm is verified using a reducedorder autopilot and four representative simulation scenarios.The simulation considers the constraints of the aircraft,and its results indicate that the algorithm performs well in following both lateral and longitudinal control,particularly for curved paths.In general,the proposed technical method is practical and competitive.