期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A review of the use of electrospinning in the preparation of flexible lithium-ion batteries
1
作者 XING jia-yi ZHANG Yu-zhuo +1 位作者 FENG Shu-xin ji ke-meng 《新型炭材料(中英文)》 北大核心 2025年第2期270-292,共23页
Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIB... Electrospinning technology has emerged as a promising method for fabricating flexible lithium-ion batter-ies(FLIBs)due to its ability to create materials with desir-able properties for energy storage applications.FLIBs,which are foldable and have high energy densities,are be-coming increasingly important as power sources for wear-able devices,flexible electronics,and mobile energy applica-tions.Carbon materials,especially carbon nanofibers,are pivotal in improving the performance of FLIBs by increas-ing electrical conductivity,chemical stability,and surface area,as well as reducing costs.These materials also play a significant role in establishing conducting networks and im-proving structural integrity,which are essential for extend-ing the cycle life and enhancing the safety of the batteries.This review considers the role of electrospinning in the fabrication of critical FLIB components,with a particular emphasis on the integration of carbon materials.It explores strategies to optimize FLIB performance by fine-tuning the electrospinning para-meters,such as electric field strength,spinning rate,solution concentration,and carbonization process.Precise control over fiber properties is crucial for enhancing battery reliability and stability during folding and bending.It also highlights the latest research findings in carbon-based electrode materials,high-performance electrolytes,and separator structures,discussing the practical challenges and opportunities these materials present.It underscores the significant impact of carbon materials on the evolution of FLIBs and their potential to shape future energy storage technologies. 展开更多
关键词 Electrospinning technology Flexible lithium-ion batteries(FLIBs) Carbon material application Nanofiber electrodes Electrochemical energy storage and conversion
在线阅读 下载PDF
A review of carbon nanotubes in modern electrochemical energy storage 被引量:2
2
作者 SONG Yao-ming QIU Shi-xin +7 位作者 FENG Shu-xin ZUO Rui ZHANG Ya-ting jiA Ke XIA Xue CHEN Ming-ming ji ke-meng WANG Cheng-yang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第6期1037-1074,共38页
The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with thei... The quest for sustainable energy storage solutions is more critical than ever,with the rise in global energy demand and the urgency of transition from fossil fuels to renewable sources.Carbon nanotubes(CNTs),with their exceptional electrical conduct-ivity and structural integrity,are at the forefront of this endeavor,offering promising ways for the advance of electrochemical energy storage(EES)devices.This review provides an analysis of the synthesis,properties,and applications of CNTs in the context of EES.We explore the evolution of CNT synthesis methods,including arc discharge,laser ablation,and chemical vapor deposition,and highlight the recent developments in metal-organic framework-derived CNTs and a novel CNT aggregate with a three-dimensional ordered macroporous structure.We also examine the role of CNTs in improving the performance of various EES devices such as lith-ium-ion,lithium-metal,lithium-sulfur,sodium,and flexible batteries as well as supercapacitors.We underscore the challenges that remain,including the scalability of CNT synthesis and the integration of CNTs in electrode materials,and propose potential solu-tions and future research directions.The review presents a forward-looking perspective on the pivotal role of CNTs in shaping the fu-ture of sustainable EES technologies. 展开更多
关键词 Carbon nanotubes CNT synthesis Metal-ion batteries Lithium-sulfur batteries Flexible batteries SUPERCAPACITORS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部