Lithium metal anode has been demonstrated as the most promising anode for lithium batteries because of its high theoretical capacity,but infinite volume change and dendritic growth during Li electrodeposition have pre...Lithium metal anode has been demonstrated as the most promising anode for lithium batteries because of its high theoretical capacity,but infinite volume change and dendritic growth during Li electrodeposition have prevented its practical applications.Both physical morphology confinement and chemical adsorption/diffusion regulation are two crucial approaches to designing lithiophilic materials to alleviate dendrite of Li metal anode.However,their roles in suppressing dendrite growth for long-life Li anode are not fully understood yet.Herein,three different Ni-based nanosheet arrays(NiO-NS,Ni_(3)N-NS,and Ni_(5)P_(4)-NS)on carbon cloth as proof-of-concept lithiophilic frame-works are proposed for Li metal anodes.The two-dimensional nanoarray is more promising to facilitate uniform Li^(+)flow and electric field.Compared with the NiO-NS and the Ni_(5)P_(4)-NS,the Ni_(3)N-NS on carbon cloth after reacting with molten Li(Li-Ni/Li_(3)N-NS@CC)can afford the strongest adsorption to Li+and the most rapid Li+diffusion path.Therefore,the Li-Ni/Li_(3)N-NS@CC electrode realizes the lowest overpotential and the most excellent electrochemical performance(60 mA cm^(−2)and 60 mAh cm^(−2)for 1000 h).Furthermore,a remarkable full battery(LiFePO_(4)||Li-Ni/Li_(3)N-NS@CC)reaches 300 cycles at 2C.This research provides valuable insight into designing dendrite-free alkali metal batteries.展开更多
基金supported by the National Key R&D Research Program of China the National Key Research Program(No.2018YFB0905400)the National Natural Science Foundation of China(Nos.51925207,U1910210,51872277,52002083,52102322 and 22109011)+5 种基金National Synchrotron Radiation Laboratory(KY2060000173)the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA21000000)the Fundamental Research Funds for the Central Universities(Wk2060140026,Wk2400000004,Wk20720220010)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(Grant.YLU-DNL Fund 2021002)the National Postdoctoral Program for Innovative Talents(BX20200047)the China Postdoctoral Science Foundation(2021M690380).
文摘Lithium metal anode has been demonstrated as the most promising anode for lithium batteries because of its high theoretical capacity,but infinite volume change and dendritic growth during Li electrodeposition have prevented its practical applications.Both physical morphology confinement and chemical adsorption/diffusion regulation are two crucial approaches to designing lithiophilic materials to alleviate dendrite of Li metal anode.However,their roles in suppressing dendrite growth for long-life Li anode are not fully understood yet.Herein,three different Ni-based nanosheet arrays(NiO-NS,Ni_(3)N-NS,and Ni_(5)P_(4)-NS)on carbon cloth as proof-of-concept lithiophilic frame-works are proposed for Li metal anodes.The two-dimensional nanoarray is more promising to facilitate uniform Li^(+)flow and electric field.Compared with the NiO-NS and the Ni_(5)P_(4)-NS,the Ni_(3)N-NS on carbon cloth after reacting with molten Li(Li-Ni/Li_(3)N-NS@CC)can afford the strongest adsorption to Li+and the most rapid Li+diffusion path.Therefore,the Li-Ni/Li_(3)N-NS@CC electrode realizes the lowest overpotential and the most excellent electrochemical performance(60 mA cm^(−2)and 60 mAh cm^(−2)for 1000 h).Furthermore,a remarkable full battery(LiFePO_(4)||Li-Ni/Li_(3)N-NS@CC)reaches 300 cycles at 2C.This research provides valuable insight into designing dendrite-free alkali metal batteries.