期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Strain-Insensitive Hierarchically Structured Stretchable Microstrip Antennas for Robust Wireless Communication 被引量:2
1
作者 Jia Zhu Senhao Zhang +8 位作者 Ning Yi Chaoyun Song Donghai Qiu Zhihui Hu Bowen Li chenghao Xing Hongbo Yang Qing Wang huanyu cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期1-12,共12页
As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical def... As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical deformations;thus,their applications are limited to wireless sensing with wireless transmission capabilities remaining elusive.Here,a hierarchically structured stretchable microstrip antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon deformations with improved overall stretchability.The almost unchanged resonance frequency during deformations enables robust on-body wireless communication and RF energy harvesting,whereas the rapid changing resonance frequency with deformations allows for wireless sensing.The proposed stretchable microstrip antenna was demonstrated to communicate wirelessly with a transmitter(input power of−3 dBm)efficiently(i.e.,the receiving power higher than−100 dBm over a distance of 100 m)on human bodies even upon 25%stretching.The flexibility in structural engineering combined with the coupled mechanical-electromagnetic simulations,provides a versatile engineering toolkit to design stretchable microstrip antennas and other potential wireless devices for stretchable electronics. 展开更多
关键词 Stretchable microstrip antennas Strain-insensitive resonance frequency Wireless communication RF energy harvesting Wearable and bio-integrated electronics
在线阅读 下载PDF
Wireless,Multifunctional System‑Integrated Programmable Soft Robot
2
作者 Sungkeun Han Jeong‑Woong Shin +13 位作者 Joong Hoon Lee Bowen Li Gwan‑Jin Ko Tae‑Min Jang Ankan Dutta Won Bae Han Seung Min Yang Dong‑Je Kim Heeseok Kang Jun Hyeon Lim Chan‑Hwi Eom So Jeong Choi huanyu cheng Suk-Won Hwang 《Nano-Micro Letters》 2025年第7期12-25,共14页
Soft robots have partially or entirely provided versatile opportunities for issues or roles that cannot be addressed by conventional machine robots,although most studies are limited to designs,controls,or physical/mec... Soft robots have partially or entirely provided versatile opportunities for issues or roles that cannot be addressed by conventional machine robots,although most studies are limited to designs,controls,or physical/mechanical motions.Here,we present a transformable,reconfigurable robotic platform created by the integration of magnetically responsive soft composite matrices with deformable multifunctional electronics.Magnetic compounds engineered to undergo phase transition at a low temperature can readily achieve reversible magnetization and conduct various changes of motions and shapes.Thin and flexible electronic system designed with mechanical dynamics does not interfere with movements of the soft electronic robot,and the performances of wireless circuit,sensors,and devices are independent of a variety of activities,all of which are verified by theoretical studies.Demonstration of navigations and electronic operations in an artificial track highlights the potential of the integrated soft robot for on-demand,environments-responsive movements/metamorphoses,and optoelectrical detection and stimulation.Further improvements to a miniaturized,sophisticated system with material options enable in situ monitoring and treatment in envisioned areas such as biomedical implants. 展开更多
关键词 Untethered multimodal locomotion Soft robotics Soft electronics Wireless Reprogrammable magnetic soft robot
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部