The selective cleavage of C-O and C-C is facing a challenge in the field of catalysis.In the present work,we studied the influence of doped Ni on the structure and electronic properties,as well as the selective C-O/C-...The selective cleavage of C-O and C-C is facing a challenge in the field of catalysis.In the present work,we studied the influence of doped Ni on the structure and electronic properties,as well as the selective C-O/C-C bond cleavages in the hydrodeoxygenation of palmitic acid over Ni-Mo_(2)C catalyst.The catalytic activity on Ni doped Mo_(2)C with TOF of 6.9×10^(3)h^(-1)is much superior to intrinsic Mo_(2)C catalyst,which is also higher than most noble metal catalysts.Structurally,the doped Ni raises the active particle dispersion and the coordination numbers of Mo species(Mo-C and Mo-O),improves the graphitization degree to promote the electron transfer,and increases the amount of Lewis and Br?nsted acid,which are responsible for the excellent hydrodeoxygenation performance.The Ni promotes simultaneously C-O and C-C bonds cleavage to produce pentadecane and hexadecane owing to the increase of electron-rich Mo sites after Ni doping.These findings contribute to the understanding of the nature of Ni-doped Mo_(2)C on the roles as catalytic active sites for C-O and C-C bonds cleavage.展开更多
基金financially supported by the National Natural Science Foundation of China(21972099)the Application Foundation Program of Sichuan Province(2021YJ0305)+1 种基金the 111 project(B17030).Shanghai Synchrotron Radiation Facility(SSRF)for XAS experiments and the support by the project from NPL of CAEP(2019BB08)。
文摘The selective cleavage of C-O and C-C is facing a challenge in the field of catalysis.In the present work,we studied the influence of doped Ni on the structure and electronic properties,as well as the selective C-O/C-C bond cleavages in the hydrodeoxygenation of palmitic acid over Ni-Mo_(2)C catalyst.The catalytic activity on Ni doped Mo_(2)C with TOF of 6.9×10^(3)h^(-1)is much superior to intrinsic Mo_(2)C catalyst,which is also higher than most noble metal catalysts.Structurally,the doped Ni raises the active particle dispersion and the coordination numbers of Mo species(Mo-C and Mo-O),improves the graphitization degree to promote the electron transfer,and increases the amount of Lewis and Br?nsted acid,which are responsible for the excellent hydrodeoxygenation performance.The Ni promotes simultaneously C-O and C-C bonds cleavage to produce pentadecane and hexadecane owing to the increase of electron-rich Mo sites after Ni doping.These findings contribute to the understanding of the nature of Ni-doped Mo_(2)C on the roles as catalytic active sites for C-O and C-C bonds cleavage.