Expanded polystyrene(EPS)concrete,known for its environmental friendliness,energy absorption capacity,and low impedance,has significant potential application in the fields of wave absorption and vibration reduction.Th...Expanded polystyrene(EPS)concrete,known for its environmental friendliness,energy absorption capacity,and low impedance,has significant potential application in the fields of wave absorption and vibration reduction.This study designed and prepared EPS concrete materials with four levels of density.Quasi-static uniaxial compression and Split Hopkinson Pressure Bar(SHPB)impact tests were conducted to obtain stress-strain curves,elastic moduli,failure modes,energy absorptions,and strain rate effects of the EPS concrete under quasi-static and dynamic loading conditions.The influences of density on various performance indicators were analyzed.By combining the Zhu-Wang-Tang(ZWT)constitutive model with a modified elastic-brittle model,a modified dynamic constitutive model was proposed.The accuracy of the model was validated by the experimental data.The results indicate that the addition of EPS particles enhances the ductility of the EPS concrete.The EPS concrete has significant strain rate effect,which gets stronger as density increases.The modifiedconstitutive model accurately characterizes the dynamic stress-strain curves of the EPS concrete.展开更多
Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical appr...Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap.展开更多
基金Supports from National Natural Science Foundation of China(U20A20286 and 12372135)。
文摘Expanded polystyrene(EPS)concrete,known for its environmental friendliness,energy absorption capacity,and low impedance,has significant potential application in the fields of wave absorption and vibration reduction.This study designed and prepared EPS concrete materials with four levels of density.Quasi-static uniaxial compression and Split Hopkinson Pressure Bar(SHPB)impact tests were conducted to obtain stress-strain curves,elastic moduli,failure modes,energy absorptions,and strain rate effects of the EPS concrete under quasi-static and dynamic loading conditions.The influences of density on various performance indicators were analyzed.By combining the Zhu-Wang-Tang(ZWT)constitutive model with a modified elastic-brittle model,a modified dynamic constitutive model was proposed.The accuracy of the model was validated by the experimental data.The results indicate that the addition of EPS particles enhances the ductility of the EPS concrete.The EPS concrete has significant strain rate effect,which gets stronger as density increases.The modifiedconstitutive model accurately characterizes the dynamic stress-strain curves of the EPS concrete.
基金Supports from National Natural Science Foundation of China(Grant Nos.U20A20286 and 11972184)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety(Grant No.2021ZDK006)+1 种基金Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201286)Science and Technology Project of Jiangsu Province of China(Grant No.BE2020716)are gratefully acknowledged.
文摘Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap.