A controllable crystallization is of practical importance to produce high-quality perovskite thin films with reduced structural defects.Lewis bases as electron-pair donor chemicals can strongly coordinate to lead ions...A controllable crystallization is of practical importance to produce high-quality perovskite thin films with reduced structural defects.Lewis bases as electron-pair donor chemicals can strongly coordinate to lead ions and have been extensively employed to manipulate the growth of perovskite crystals.In this work,we demonstrate a series of Lewis-base amides,for morphological regulation of methylammonium lead triiodide(MAPbI3)thin films.The screened acetamide was demonstrated to decently improve the grain size,along with a spatial distribution at grain boundaries(GBs).The mesostructured solar cells of acetamide-modified absorbers yielded an optimized power conversion efficiency(PCE)of 20.04%with a mitigated open-circuit voltage(V_(OC))deficit of 0.39 V.This work provides a facile and cost-effective strategy toward controllable fabrication of high-performance MAPbI3 solar cells.展开更多
Organometal halide perovskites have recently emerged with a huge potential for photovoltaic applications. Moreover, preparation of high-quality perovskite crystals with controlled morphology is of great significance f...Organometal halide perovskites have recently emerged with a huge potential for photovoltaic applications. Moreover, preparation of high-quality perovskite crystals with controlled morphology is of great significance for the fundamental studies such as optical and electrical properties, as well as the applications. Here, we report a one-pot solvothermal process to synthesize sheet-shaped CH3NH3PbBr3 single crystals with the lateral size of 100 μm and the thickness of 3–8 μm. Furthermore, a controlled etching behavior on the crystalline surface was demonstrated, which could be the irregular collapse of the crystalline surface caused by the local accumulation of methylammonium cations. Using this technique,CH3NH3PbBr3 single crystal sheets could be used in the various optoelectronic devices, such as nanolaser,optical sensors, photodetectors and field effect transistors.展开更多
基金financially supported by the National Natural Science Funds for Distinguished Young Scholar(51725201)the National Natural Science Foundation of China(51972111,51902185,51602103)+4 种基金Young Elite Scientists Sponsorship Program by CAST(2017QNRC001)International(Regional)Cooperation and Exchange Projects of the National Natural Science Foundation of China(51920105003)Innovation Program of Shanghai Municipal Education Commission(E00014)the Fundamental Research Funds for the Central Universities(JKD012016025,JKD012016022)Shanghai Engineering Research Center of Hierarchical Nanomaterials(18DZ2252400)。
文摘A controllable crystallization is of practical importance to produce high-quality perovskite thin films with reduced structural defects.Lewis bases as electron-pair donor chemicals can strongly coordinate to lead ions and have been extensively employed to manipulate the growth of perovskite crystals.In this work,we demonstrate a series of Lewis-base amides,for morphological regulation of methylammonium lead triiodide(MAPbI3)thin films.The screened acetamide was demonstrated to decently improve the grain size,along with a spatial distribution at grain boundaries(GBs).The mesostructured solar cells of acetamide-modified absorbers yielded an optimized power conversion efficiency(PCE)of 20.04%with a mitigated open-circuit voltage(V_(OC))deficit of 0.39 V.This work provides a facile and cost-effective strategy toward controllable fabrication of high-performance MAPbI3 solar cells.
基金financially supported by the National Natural Science Foundation of China (51602103)the National Natural Science Funds for Distinguished Young Scholar (51725201)+4 种基金Young Elite Scientists Sponsorship Program by CAST (2017QNRC001)Shanghai Pujiang Program (18PJD009)“Chen Guang” Project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (15CG26)Fundamental Research Funds for the Central Universities (222201718002)the Major Research plan of National Natural Science Foundation of China (91534202)
文摘Organometal halide perovskites have recently emerged with a huge potential for photovoltaic applications. Moreover, preparation of high-quality perovskite crystals with controlled morphology is of great significance for the fundamental studies such as optical and electrical properties, as well as the applications. Here, we report a one-pot solvothermal process to synthesize sheet-shaped CH3NH3PbBr3 single crystals with the lateral size of 100 μm and the thickness of 3–8 μm. Furthermore, a controlled etching behavior on the crystalline surface was demonstrated, which could be the irregular collapse of the crystalline surface caused by the local accumulation of methylammonium cations. Using this technique,CH3NH3PbBr3 single crystal sheets could be used in the various optoelectronic devices, such as nanolaser,optical sensors, photodetectors and field effect transistors.