期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Python在结构化学可视化教学中的应用探索
1
作者 王延忻 王宏娟 +1 位作者 石玉仁 杨云霞 《大学化学》 CAS 2024年第3期108-117,共10页
介绍使用Python语言和科学计算库绘制结构化学中常见的氢原子s和p轨道波函数和电子云的图形的探索。在此过程中编写了多个脚本,通过数据处理和不同的生成算法实现波函数、电子云的可视化教学,旨在引导学生深入学习和理解波函数和电子云... 介绍使用Python语言和科学计算库绘制结构化学中常见的氢原子s和p轨道波函数和电子云的图形的探索。在此过程中编写了多个脚本,通过数据处理和不同的生成算法实现波函数、电子云的可视化教学,旨在引导学生深入学习和理解波函数和电子云物理意义,提升学生自主思考和主动学习的能力。 展开更多
关键词 结构化学 PYTHON 波函数 电子云 可视化
在线阅读 下载PDF
Enhancing hydrogen evolution and oxidation kinetics through oxygen insertion into nickel lattice
2
作者 Wanli Liang Xiyu Gong +9 位作者 Jinchang Xu Zixuan Dan Fanyan Xie Hulei Yu Hao-Fan wang Yanshuo Jin hongjuan wang Yonghai Cao Hui Meng Hao Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期529-539,I0012,共12页
Nickel-based materials,including metallic Ni and Ni oxide,have been widely studied in the exploration of non-precious-metal hydrogen electrocatalysts,but neither pure Ni nor NiO is ideal for the hydrogen evolution rea... Nickel-based materials,including metallic Ni and Ni oxide,have been widely studied in the exploration of non-precious-metal hydrogen electrocatalysts,but neither pure Ni nor NiO is ideal for the hydrogen evolution reaction(HER)and hydrogen oxidation reaction(HOR).In this paper,an oxygen insertion strategy was applied on nickel to regulate its hydrogen electrocatalytic performance,and the oxygen-inserted nickel catalyst was successfully obtained with the assistance of tungsten dioxide support(denoted as O-Ni/WO_(2)).The partial insertion of oxygen in Ni maintains the face-centered cubic arrangement of Ni atoms,simultaneously expanding the lattice and increasing the lattice spacing.Consequently,the adsorption strength of^(*)H and^(*)OH on Ni is optimized,thus resulting in superior electrocatalytic performance of0-Ni/WO_(2)in alkaline HER/HOR.The Tafel slope of O-Ni/WO_(2)@NF for HER is 56 mV dec^(-1),and the kinetic current density of O-Ni/WO_(2)for HOR reaches 4.85 mA cm^(-2),which is ahead of most currently reported catalysts.Our proposed strategy of inserting an appropriate amount of anions into the metal lattice could provide more possibilities for the design of high-performance catalysts. 展开更多
关键词 Hydrogen evolution Hydrogen oxidation NICKEL Oxygen insertion Adsorption free energy
在线阅读 下载PDF
Preparation of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing bagasse lignin as potential electrocatalyst towards oxygen reduction reaction in alkaline and acid media 被引量:5
3
作者 Yixing Shen Feng Peng +3 位作者 Yonghai Cao Jianliang Zuo hongjuan wang Hao Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期33-42,共10页
Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using... Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using bagasse lignin,denoted as lignin-derived carbon(LC).By adjusting the ratio of nitrogen source and annealing temperature,we obtained the ultrathin graphitic lignin carbon(LC-4-1000)with abundant wrinkles with high surface area of 1208 m2g_1 and large pore volume of 1.40 cm3g_1.In alkaline medium,LC-4-1000 has more positive half-wave potential and nearly current density compared to commercial Pt/C for oxygen reduction reaction(ORR).More importantly,LC-4-1000 also exhibits comparable activity and superior stability for ORR in acid medium due to its high graphitic N ratio and a direct four electron pathway for ORR.This study develops a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in fuel cells. 展开更多
关键词 ELECTROCATALYST Biocarbon LIGNIN NITROGEN and SULFUR CO-DOPED carbon Oxygen reduction reaction
在线阅读 下载PDF
Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis 被引量:5
4
作者 Xianfeng Huang Guangxing Yang +4 位作者 Shuang Li hongjuan wang Yonghai Cao Feng Peng Hao Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期721-751,共31页
Since the two seminal papers were published independently in 2004, high-entropy-alloys(HEAs) have been applied to structural and functional materials due to the enhanced mechanical properties, thermal stability, and e... Since the two seminal papers were published independently in 2004, high-entropy-alloys(HEAs) have been applied to structural and functional materials due to the enhanced mechanical properties, thermal stability, and electrical conductivity. In recent years, HEA nanoparticles(HEA-NPs) were paid much attention to in the field of catalysis for the promoted catalytic activity. Furthermore, the various ratios among the metal components and tunable bulk and surface structures enable HEAs have big room to enhance the catalytic performance. Especially, noble-metal-based HEAs displayed significantly improved performance in electrocatalysis, where the ‘core effects’ were employed to explain the superior catalytic activity. However, it is insufficient to understand the essential mechanism or further guide the design of electrocatalysts. Structure–property relationship should be disclosed for the catalysis on HEA-NPs to accelerate the process of seeking high effective and efficient electrocatalysts. Therefore, we summarized the recent advances of noble-metal-based HEA-NPs applied to electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, methanol oxidation reaction, ethanol oxidation reaction, formic acid oxidation reaction, hydrogen oxidation reaction, carbon dioxide reduction reaction and nitrogen reduction reaction. For each electrocatalytic reaction, the reaction mechanism and catalyst structure were presented, and then the structure–property relationship was elaborated. The review begins with the development, concept, four ‘core effect’ and synthesis methods of HEAs. Next,the electrocatalytic reactions on noble-metal-based HEA-NPs are summarized and discussed independently. Lastly, the main views and difficulties pertaining to structure–property relationship for HEAs are discussed. 展开更多
关键词 Noble-metal-based High-entropy-alloy Nanoparticles ‘Core effects’ Structure–property relationship ELECTROCATALYSIS
在线阅读 下载PDF
Preparation of phosphorus-doped carbon nanospheres and their electrocatalytic performance for O_2 reduction 被引量:4
5
作者 Ziwu Liu Feng Peng +3 位作者 hongjuan wang Hao Yu Wenxu Zheng Xianyong Wei 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第3期257-264,共8页
Phosphorus-doped carbon nanospheres without any metal residues were synthesized and characterized. The results revealed that the doping phosphorus atoms could significantly improve the electrocatalytic activity of gra... Phosphorus-doped carbon nanospheres without any metal residues were synthesized and characterized. The results revealed that the doping phosphorus atoms could significantly improve the electrocatalytic activity of graphitic carbon for the oxygen-reduction reaction (ORR) both in acidic and alkaline media, and the materials exhibited high electrocatalytic activity, long-term stability, and excellent tolerance to crossover effects especially in alkaline media. Quantum mechanics calculations with the density functional theory demonstrated that the changes in charge density and energetic characteristics of frontier orbitals for the P-doped graphene sheet could facilitate the ORR. 展开更多
关键词 varbon nanosphere oxygen reduction ELECTROCATALYSIS carbon catalysis phosphorus doping
在线阅读 下载PDF
Syngas production by dry reforming of the mixture of glycerol and ethanol with CaCO3 被引量:2
6
作者 Chengxiong Dang Shijie Wu +4 位作者 Guangxing Yang Yonghai Cao hongjuan wang Feng Peng Hao Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期90-97,共8页
The reduction of CO2 emission is crucial for the mitigation of climate change.A considerable amount of industrial CO2 can be absorbed in the form of carbonates through high-temperature sorption processes.In this regar... The reduction of CO2 emission is crucial for the mitigation of climate change.A considerable amount of industrial CO2 can be absorbed in the form of carbonates through high-temperature sorption processes.In this regard,the efficient conversion of carbonates to value-added products will provide an economically viable method for the sustainable usage of carbon compounds.Herein,we report a promising solution involving the use of a glycerol and ethanol mixture as a hydrogen donor in the dry reforming process with CaCO3 to produce syngas.A series of metal active components,including Ni,Fe,Co,Cu,Pt,Pd,Ru,and Rh,was used to promote this reaction.Ni showed comparable performance with that of Pd,but outperformed Co,Fe,Cu,Rh,Ru,and Pt.Approximately 100%conversion of glycerol and ethanol,~92%selectivity of synthesis gas(H2 and CO),and a H2/CO ratio of^1.2 were achieved over CaCO3 containing10 wt%Ni(10Ni-CaCO3).Meanwhile,the CO2 concentration was less than 5 vol%,indicating that most of the CO2 captured by the carbonate can be transformed into chemicals;however,they cannot simply be emitted.The CO2 released from the decomposition of CaCO3 not only adjusted the ratio of H2 to CO but also eliminated cokes to guarantee the CO2 absorption-conversion cyclic stability in the absence of steam and at high temperatures. 展开更多
关键词 GLYCEROL ETHANOL CACO3 Dry REFORMING SYNGAS
在线阅读 下载PDF
Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides 被引量:1
7
作者 Hongqing Chen Hao Yu +5 位作者 Yong Tang Minqiang Pan Guangxing Yang Feng Peng hongjuan wang Jian Yang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第2期191-198,共8页
Hydrogen was produced over noble metal(Ir, Ru, Rh, Pd) catalysts supported on various oxides, including γ-Al2O3, CeO2, ZrO2 and La2O3, via the autothermal reforming reaction of ethanol (ATRE) and oxidative reform... Hydrogen was produced over noble metal(Ir, Ru, Rh, Pd) catalysts supported on various oxides, including γ-Al2O3, CeO2, ZrO2 and La2O3, via the autothermal reforming reaction of ethanol (ATRE) and oxidative reforming reaction of ethanol (OSRE). The conversion of ethanol and selectivites for hydrogen and byproducts such as methane, ethylene and acetaldehyde were studied. It was found that lanthana alone possessed considerable activity for the ATRE reaction, which could be used as a functional support for ATRE catalysts. It was demonstrated that Ir/La2O3 prevented the formation of methane, and Rh/La2O3 encumbered the production of ethylene and acetaldehyde. ATRE reaction was carried out over La2O3-supported catalysts (Ir/La2O3) with good stability on stream, high conversion, and excellent hydrogen selectivity approaching thermodynamic limit under autothermal condition. Typically, 3.4H2 molecules can be extracted from a pair of ethanol and water molecules over Ir(5wt%)/La2O3. The results presented in this paper indicate that Ir/La2O3 can be used as a promising catalyst for hydrogen production via ATRE reaction from renewable ethanol. 展开更多
关键词 autothermal reforming ETHANOL hydrogen production IRIDIUM lanthanum oxide
在线阅读 下载PDF
Production of high-purity hydrogen from paper recycling black liquor via sorption enhanced steam reforming
8
作者 Hanke Li Shijie Wu +5 位作者 Chengxiong Dang Guangxing Yang Yonghai Cao hongjuan wang Feng Peng Hao Yu 《Green Energy & Environment》 SCIE CSCD 2021年第5期771-779,共9页
Environmentally friendly and energy saving treatment of black liquor(BL),a massively produced waste in Kraft papermaking process,still remains a big challenge.Here,by adopting a NieCaOeCa_(12)Al_(14)O_(33) bifunctiona... Environmentally friendly and energy saving treatment of black liquor(BL),a massively produced waste in Kraft papermaking process,still remains a big challenge.Here,by adopting a NieCaOeCa_(12)Al_(14)O_(33) bifunctional catalyst derived from hydrotalcite-like materials,we demonstrate the feasibility of producing high-purity H_(2)(~96%)with 0.9 mol H_(2) mol^(-1) C yield via the sorption enhanced steam reforming(SESR)of BL.The SESRBL performance in terms of H_(2) production maintained stable for 5 cycles,but declined from the 6th cycle.XRD,Raman spectroscopy,elemental analysis and energy dispersive techniques were employed to rationalize the deactivation of the catalyst.It was revealed that gradual sintering and agglomeration of Ni and CaO and associated coking played important roles in catalyst deactivation and performance degradation of SESRBL,while deposition of Na and K from the BL might also be responsible for the declined performance.On the other hand,it was demonstrated that the SESRBL process could effectively reduce the emission of sulfur species by storing it as CaSO_(3).Our results highlight a promising alternative for BL treatment and H_(2) production,thereby being beneficial for pollution control and environment governance in the context of mitigation of climate change. 展开更多
关键词 Black liquor High-purity hydrogen Sorption enhanced steam reforming Sulfur removal
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部