期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Scalable and facile synthesis of V_(2)O_(5) nanoparticles via ball milling for improved aerobic oxidative desulfurization 被引量:6
1
作者 Yiru Zou Chao Wang +6 位作者 hanxiang chen Haiyan Ji Qian Zhu Wenshu Yang Linlin chen Zhigang chen Wenshuai Zhu 《Green Energy & Environment》 SCIE CSCD 2021年第2期169-175,共7页
In recent years, transition-metal oxides(TMOs) have been long employed for aerobic oxidative desulfurization. However, the inherent bottlenecks, such as the low explosion of active sites, limit the application of bulk... In recent years, transition-metal oxides(TMOs) have been long employed for aerobic oxidative desulfurization. However, the inherent bottlenecks, such as the low explosion of active sites, limit the application of bulk TMOs catalyst. In this study, V_(2)O_(5) nanoparticles with oxygen vacancies were prepared in large-scale via facile ball milling strategy with adding oxalic acid as a reducing agent. The as-prepared catalysts exhibit remarkable sulfur removal for oils with different initial S-concentrations and different substrates. Sulfur removal could reach up to 99.7%(< 2 ppm) under the optimized reaction conditions. This work provides a feasible desulfurization strategy for fuel oils. 展开更多
关键词 Ball milling V_(2)O_5 nanoparticles Oxygen vacancies Aerobic oxidative desulfurization
在线阅读 下载PDF
Construction of a few-layer g-C_3N_4/α-MoO_3 nanoneedles all-solid-state Z-scheme photocatalytic system for photocatalytic degradation 被引量:2
2
作者 Xiaoni Zhang Jianjian Yi +8 位作者 hanxiang chen Mao Mao Liang Liu Xiaojie She Haiyan Ji Xiangyang Wu Shouqi Yuan Hui Xu Huaming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第2期65-71,共7页
The suppression of the recombination of electrons and holes(e–h) and the enhancement of the light absorption of semiconductors are two key points toward efficient photocatalytic degradation.Here,we report a few-layer... The suppression of the recombination of electrons and holes(e–h) and the enhancement of the light absorption of semiconductors are two key points toward efficient photocatalytic degradation.Here,we report a few-layer g-C_3N_4/α-MoO_3 nanoneedles(flg-C_3N_4/α-MoO_3 NNs) all-solid-state Z-scheme mechanism photocatalyst synthesized via a typical hydrothermal method in a controlled manner.The recombination of the photo-induced e–h pairs could be effectively restrained by the Z-scheme passageway between the flg-C_3N_4 and α-MoO_3 NNs in the composite,which could also promise a high redox ability to degrade pollutants.And it became possible for the prepared photocatalyst to absorb light in a wide range of wavelengths.The detailed mechanism was studied by electron spin-resonance spectroscopy(ESR).The low-dimensional nanostructure of the two constituents(α-MoO_3 NNs with one-dimensional structure and flg-C_3N_4 with two-dimensional structure) endowed the composite with varieties of excellent physicochemical properties,which facilitated the transfer and diffusion of the photoelectrons and increased the specific surface area and the active sites.The 10 wt% flg-C_3N_4/α-MoO_3 NNs showed the best photocatalytic performance toward RhB degradation,the rate of which was 71.86%,~2.6 times higher than that ofα-MoO_3 NNs. 展开更多
关键词 Flg-C3N4 α-MoO3 NANONEEDLES ALL-SOLID-STATE Z-scheme mechanism LOW-DIMENSIONAL nanostructure PHOTOCATALYTIC degradation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部