期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental study on the anti-penetration characteristics of liquidfilled structure with air layer
1
作者 Mengmeng Wu Jian Jin hailiang hou 《Defence Technology(防务技术)》 2025年第8期185-202,共18页
The study aims to explore the damage characteristics and protection technologies of liquid-filled structures under high-speed projectile impact.A series of penetration impact experiments were conducted by focusing on ... The study aims to explore the damage characteristics and protection technologies of liquid-filled structures under high-speed projectile impact.A series of penetration impact experiments were conducted by focusing on different air layer configurations.By using high-speed camera and dynamic measurement systems,the effects of air layers on the projectile penetration,pressure wave propagation,cavitation evolution,and structural dynamic responses were analyzed.The results showed that the rarefaction wave reflected from the air-liquid interface significantly reduced the peak and specific impulse of the initial pressure wave,thereby diminishing the impact load on the structure.Additionally,the compressibility of air layers also attenuated the cavitation extrusion load.Both front and rear plates exhibited superimposed deformation modes,i.e.,local deformation or petal fracture with global deformation.Air layers effectively mitigated global deformation.However,when the air layer was positioned on the projectile's trajectory,it split the water-entry process and velocity attenuation of the projectile into two relatively independent phases.And the secondary water entry pressure wave caused more severe local deformation and petal fractures on the rear plate. 展开更多
关键词 Liquid-filled structure Air layer Water entry PROJECTILE PENETRATION Pressure wave
在线阅读 下载PDF
Investigation on dynamic response of liquid-filled cylindrical shellstructures under the action of combined blast and fragments loading
2
作者 Zhujie Zhao hailiang hou +4 位作者 Dian Li Xiaowei Wu Yongqing Li Zhenghan Chen Linzhi Wu 《Defence Technology(防务技术)》 2025年第7期334-354,共21页
This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabri... This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation. 展开更多
关键词 Blast wave Combined blast and fragments loading Filling method Liquid-filled structure Dynamic response
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部