期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research on the effect of Reynolds correlation in natural convection film condensation 被引量:1
1
作者 Lei Wu hai-jun jia +3 位作者 Xi-Zhen Ma Yang Liu Xing-Tuan Yang Jun Wang 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第6期169-178,共10页
Film condensation is a vital phenomenon in the nuclear engineering applications,such as the gas-steam pressurizer design,and heat removing on containment in the case of postulated accident.Reynolds number in film cond... Film condensation is a vital phenomenon in the nuclear engineering applications,such as the gas-steam pressurizer design,and heat removing on containment in the case of postulated accident.Reynolds number in film condensation can be calculated from either the mass relation or the energy relation,but few researches have distinguished the difference between them at present.This paper studies the effect of Reynolds correlation in the natural convection film condensation on the outer tube.The general forms of the heat transfer coefficient correlation of film condensation are developed in different flow regimes.By simultaneously solving a set of the heat transfer coefficient correlations with Re_(mass) and Re_(energy),the general expressions for Re_(mass) and Re_(energy) and the relation between the corresponding heat transfer coefficients are obtained.In the laminar and wavefree flow regime,Re_(mass) and Re_(energy) are equivalent,while in the laminar and wavy flow regime,Re_(mass) is much smaller than Re_(energy),and the deviation of the corresponding average heat transfer coefficients is about 30% at the maximum.In the turbulent flow regime,the relation of Re_(mass) and Re_(energy)is greatly influenced by Prandtl number.The relative deviation of their average heat transfer coefficients is the nonlinear function of Reynolds number and Prandtl number.Compared with experimental results,the heat transfer coefficient calculated from Re_(energy) is more accurate. 展开更多
关键词 Film CONDENSATION REYNOLDS CORRELATION Heat transfer COEFFICIENT Natural CONVECTION
在线阅读 下载PDF
Research on the steam–gas pressurizer model with Relap5 code
2
作者 Xi-Zhen Ma hai-jun jia Yang Liu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第5期1-8,共8页
Steam–gas pressurizers are self-pressurizing, and since steam and noncondensable gas are used to sustain their pressure, they experience very complicated thermal–hydraulic phenomena owing to the presence of the latt... Steam–gas pressurizers are self-pressurizing, and since steam and noncondensable gas are used to sustain their pressure, they experience very complicated thermal–hydraulic phenomena owing to the presence of the latter. A steam–gas pressurizer model was developed using Relap5 code to investigate such a pressurizer's thermal–hydraulic characteristics.The important thermal–hydraulic processes occurring in the pressurizer model include bulk flashing, rainout, wall condensation with noncondensable gas, and interfacial heat and mass transfer. The pressurizer model was verified using results from insurge experiments performed at the Massachusetts Institute of Technology. It was found that noncondensable gas was one of the important factors governing the pressure response, and the accuracy of the developed model would change with different mass fractions and types of noncondensable gas. 展开更多
关键词 RELAP5 code Noncondensable GAS Heat and mass TRANSFER Steam–gas PRESSURIZER CONDENSATION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部