This paper proposes a family of raptor-like rate-compatible spatially coupled low-density parity-check(RL-RC-SC-LDPC)codes from RL-RC-LDPC block codes.There are two important keys.One is the performance of the base ma...This paper proposes a family of raptor-like rate-compatible spatially coupled low-density parity-check(RL-RC-SC-LDPC)codes from RL-RC-LDPC block codes.There are two important keys.One is the performance of the base matrix.RL-LDPC codes have been adopted in the technical specification of 5G new radio(5G-NR).We use the 5G NR LDPC code as the base matrix.The other is the edge coupling design.In this regard,we have designed a rate-compatible coupling algorithm,which can improve performance under multiple code rates.The constructed RL-RC-SC-LDPC code property requires a large coupling length L and thus we improved the reciprocal channel approximation(RCA)algorithm and proposed a sliding window RCA algorithm.It can provide lower com-plexity and latency than RCA algorithm.The code family shows improved thresholds close to the Shannon limit and finite-length performance compared with 5G NR LDPC codes for the additive white Gaussian noise(AWGN)channel.展开更多
文摘This paper proposes a family of raptor-like rate-compatible spatially coupled low-density parity-check(RL-RC-SC-LDPC)codes from RL-RC-LDPC block codes.There are two important keys.One is the performance of the base matrix.RL-LDPC codes have been adopted in the technical specification of 5G new radio(5G-NR).We use the 5G NR LDPC code as the base matrix.The other is the edge coupling design.In this regard,we have designed a rate-compatible coupling algorithm,which can improve performance under multiple code rates.The constructed RL-RC-SC-LDPC code property requires a large coupling length L and thus we improved the reciprocal channel approximation(RCA)algorithm and proposed a sliding window RCA algorithm.It can provide lower com-plexity and latency than RCA algorithm.The code family shows improved thresholds close to the Shannon limit and finite-length performance compared with 5G NR LDPC codes for the additive white Gaussian noise(AWGN)channel.