BACKGROUND:This study aims to explore whether Xuebijing(XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism.METHODS:A rat model of sepsis was established by cecal ligation and puncture...BACKGROUND:This study aims to explore whether Xuebijing(XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism.METHODS:A rat model of sepsis was established by cecal ligation and puncture(CLP).A total of 30 male SD rats were divided into four groups:sham group,CLP group,XBJ + axitinib group,and XBJ group.XBJ was intraperitoneally injected 2 h before CLP.Hemodynamic data(blood pressure and heart rate) were recorded.The intestinal microcirculation data of the rats were analyzed via microcirculation imaging.Enzyme-linked immunosorbent assay(ELISA) kits were used to detect the serum levels of interleukin-6(IL-6),C-reactive protein(CRP),and tumor necrosis factor-α(TNF-α) in the rats.Histological analysis and transmission electron microscopy were used to analyze the injury of small intestinal microvascular endothelial cells and small intestinal mucosa in rats.The expression of vascular endothelial growth factor A(VEGF-A),phosphoinositide 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(Akt),and phosphorylated Akt(p-Akt) in the small intestine was analyzed via Western blotting.RESULTS:XBJ improved intestinal microcirculation dysfunction in septic rats,alleviated the injury of small intestinal microvascular endothelial cells and small intestinal mucosa,and reduced the systemic inflammatory response.Moreover,XBJ upregulated the expression of VEGF-A,p-PI3K/total PI3K,and p-Akt/total Akt in the rat small intestine.CONCLUSION:XBJ may improve intestinal microcirculation dysfunction in septic rats possibly through the VEGF-A/PI3K/Akt signaling pathway.展开更多
Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the...Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies.展开更多
BACKGROUND:Intestinal microcirculation dysfunction is an important factor that causes poor prognosis in sepsis patients and is an important pathophysiological basis for the occurrence and development of sepsis.DATA RE...BACKGROUND:Intestinal microcirculation dysfunction is an important factor that causes poor prognosis in sepsis patients and is an important pathophysiological basis for the occurrence and development of sepsis.DATA RESOURCES:PubMed,Web of Science,and China National Knowledge Infrastructure(CNKI)were searched from inception to August 1,2021.The search was limited to the English language only.Two reviewers independently identified studies related to intestinal microcirculation dysfunction in sepsis.Exclusion criteria were duplicate articles according to multiple search criteria.RESULTS:Fifty articles were included,and most of them were animal studies.These studies reported pathogenesis,including endothelial dysfunction,leukocyte recruitment and adhesion,microthrombus formation,microcirculation hypoperfusion,and redistribution of intestinal wall blood flow.The monitoring methods of intestinal microcirculation were also diverse,including handheld microscopes,intravital microscopy(IVM),laser Doppler blood flow instruments,laser speckle contrast imaging,tissue refl ectance spectrophotometry,biochemical markers of intestinal ischemia,and histopathological examination.In view of the related pathogenesis of intestinal microcirculation disorder in sepsis,existing studies also have diff erent opinions on its treatment.CONCLUSIONS:Limited by monitoring,there are few clinical studies on intestinal microcirculation dysfunction in sepsis.Related research mainly focuses on basic research,but some progress has also been made.Therefore,this review may provide a reference for future research on intestinal microcirculation dysfunction in sepsis.展开更多
With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studi...With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.展开更多
BACKGROUND:Sepsis-induced liver injury is a fatal complication of sepsis.Trichostatin A(TSA)regulates inflammation and autophagy in some human diseases,and forkhead box O3a(FoxO3a)has been shown to regulate autophagy....BACKGROUND:Sepsis-induced liver injury is a fatal complication of sepsis.Trichostatin A(TSA)regulates inflammation and autophagy in some human diseases,and forkhead box O3a(FoxO3a)has been shown to regulate autophagy.The present study aims to investigate whether TSA exerts its effects on septic liver injury through the FoxO3a/autophagy signaling pathway.METHODS:A sepsis mouse model was constructed by the cecal ligation and puncture(CLP)method,and AML12 cells were pretreated with lipopolysaccharide(LPS)(1μg/mL)to establish a sepsis cell model.Forty mice were divided into four groups,namely control group,TSA group,CLP group,and CLP+TSA group,with 10 mice in each group.Cells were divided into control group,TSA group,LPS group,and LPS+TSA group.Hematoxylin-eosin(H&E)staining and biochemical methods were used to evaluate liver tissue injury.Enzyme-linked immunosorbent assay(ELISA)was applied to detect the expression of proinflammatory cytokines,and Western blotting and immunofluorescence were used to measure autophagy-related protein expression.RESULTS:Compared with the CLP group(mice),the proinflammatory cytokines(interleukin-β[IL-β]2,665.27±324.90 pg/mL to 2,080.26±373.66 pg/mL;interleukin-6[IL-6]399.01±60.98 pg/mL to 221.90±46.89 pg/mL)and the hepatocyte injury markers(aspartate transaminase[AST]from 198.18±27.07 U/L to 128.42±20.55 U/L;alanine aminotransferase[ALT]from 634.98±74.10 U/L to 478.60±32.56 U/L)were notably decreased after TSA intervention.Moreover,LC3 II and FoxO3a showed an obvious increase and P62 showed an obvious decrease in the CLP+TSA group.Cell experiment results showed the similar trend.After Fox O3a gene was knocked down in AML12 cells,the promotion of autophagy and the improvement of liver enzyme index and inflammation by TSA were weakened.CONCLUSION:TSA may improve the inflammatory response and liver injury in septic mice through Fox O3a/autophagy.展开更多
The isomer ^(229m)Th is the most promising candidate for clocks based on the nuclear transition because it has the lowest excitation energy of only 8.10±0.17 eV.Various experiments and theories have focused on me...The isomer ^(229m)Th is the most promising candidate for clocks based on the nuclear transition because it has the lowest excitation energy of only 8.10±0.17 eV.Various experiments and theories have focused on methods of triggering the transition between the ground state and isomeric state,among which the electronic bridge(EB)is one of the most efficient.In this paper,we propose a new electronic bridge mechanism via two-photon excitation based on quantum optics for a two-level nuclear quantum system.The long-lived 7 s1/2 electronic shell state of^(229m)Th^(3+),with a lifetime of approximately 0.6 s,is chosen as the initial state and the atomic shells(7 s-10 s)could be achieved as virtual states in a two-photon process.When the virtual states return to the initial state 7 s1/2,there is a chance of triggering the nucleus 229Th^(3+),to its isomeric state ^(229m)Th ^(3+),via EB.Two lasers at moderate intensity((10^(10)-10^(14))W/m^(2)),with photon energies near the optical range,are expected to populate the isomer at a saturated rate of approximately 10^(9) s^(-1),which is much higher than that due to other mechanisms.We believe that this twophoton EB scheme can help in the development of nuclear clocks and deserves verification via a series of experiments with ordinary lasers in laboratories.展开更多
Investigating deuteron–deuteron(DD)fusion reactions in a plasma environment similar to the early stages of the Big Bang is an important topic in nuclear astrophysics.In this study,we experimentally investigated such ...Investigating deuteron–deuteron(DD)fusion reactions in a plasma environment similar to the early stages of the Big Bang is an important topic in nuclear astrophysics.In this study,we experimentally investigated such reactions,using eight laser beams with the third harmonic impacting on a deuterated polyethylene target at the ShenGuang-II Upgrade laser facility.This work focused on the application of range-filter(RF)spectrometers,assembled from a 70 lm aluminum filter and two CR-39 nuclear track detectors,to measure the yields of primary DD-protons.Based on the track diameter calibration results of 3 MeV protons used to diagnose the tracks on the RF spectrometers,an approximate primary DD-proton yield of(8.5±1.7)×10^6 was obtained,consistent with the yields from similar laser facilities worldwide.This indicates that the RF spectrometer is an effective way to measure primary DD-protons.However,due to the low yields of D^3He-protons and its small track diameter,CR-39 detectors were unable to distinguish it from the background spots.Using other accurate detectors may help to measure these rare events.展开更多
Charged particle diagnosis is an important aspect of laser–plasma experiments conducted at super-intense laser facilities. In recent years, Columbia Resin #39 (CR- 39) detectors have been widely employed for detectin...Charged particle diagnosis is an important aspect of laser–plasma experiments conducted at super-intense laser facilities. In recent years, Columbia Resin #39 (CR- 39) detectors have been widely employed for detecting charged particles in laser–plasma experiments. This is because the CR-39 polymer does not respond to electromagnetic pulses or X-rays. This study presents a method for calibrating the relationship between particle energy and track diameter in a CR-39 detector (TasTrak■) using 3-8 MeV protons, 6-30 MeV carbon ions, and 1–5 MeV alpha particles. The particle tracks were compared under the manufacturer’s recommended etching conditions of 6.25 mol/l NaOH at 98℃ and under the widely adopted experimental conditions of 6.25 mol/l NaOH at 70℃. The results show that if the NaOH solution concentration is 6.25 mol/l, then the temperature of 70℃is more suitable for etching proton tracks than 98℃ and employing a temperature of 98 ℃ to etch alpha-particle and carbon-ion tracks can significantly reduce the etching time. Moreover, this result implies that C3+ ion or alpha-particle tracks can be distinguished from proton tracks with energy above 3 MeV by controlling the etching time. This calibration method for the CR-39 detector can be applied to the diagnosis of reaction products in laser–plasma experiments.展开更多
We study the dissipative quantum phase transition(QPT)in a biased Tavis–Cummings model consisting of an ensemble of two-level systems(TLSs)interacting with a cavity mode,where the TLSs are pumped by a drive field.In ...We study the dissipative quantum phase transition(QPT)in a biased Tavis–Cummings model consisting of an ensemble of two-level systems(TLSs)interacting with a cavity mode,where the TLSs are pumped by a drive field.In our proposal,we use a dissipative TLS ensemble and an active cavity with effective gain.In the weak drive-field limit,the QPT can occur under the combined actions of the loss and gain of the system.Owing to the active cavity,the QPT behavior can be much differentiated even for a finite strength of the drive field on the TLS ensemble.Also,we propose to implement our scheme based on the dissipative nitrogen-vacancy(NV)centers coupled to an active optical cavity made from the gainmedium-doped silica.Furthermore,we show that the QPT can be measured by probing the transmission spectrum of the cavity embedding the ensemble of the NV centers.展开更多
The neutron yield in the12C(d,n)13N reaction and the proton yield in the12C(d,p)13C reaction have been measured using deuteron beams of energies 0.6-3 MeV.The deuteron beam is delivered from a 4-MeV electrostatic acce...The neutron yield in the12C(d,n)13N reaction and the proton yield in the12C(d,p)13C reaction have been measured using deuteron beams of energies 0.6-3 MeV.The deuteron beam is delivered from a 4-MeV electrostatic accelerator and bombarded on a thick carbon target.The neutrons are detected at 0°,24°,and 48°and the protons at135°in the laboratory frame.Further,the ratio of the neutron yield to the proton yield was calculated.This can be used to effectively recognize the resonances.The resonances are found at 1.4 MeV,1.7 MeV,and 2.5 MeV in the12C(d,p)13C reaction,and at 1.6 MeV and 2.7 MeV in the12C(d,n)13N reaction.The proposed method provides a way to reduce systematic uncertainty and helps confirm more resonances in compound nuclei.展开更多
基金supported by a grant from National Natural Science Foundation of China (82272196)。
文摘BACKGROUND:This study aims to explore whether Xuebijing(XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism.METHODS:A rat model of sepsis was established by cecal ligation and puncture(CLP).A total of 30 male SD rats were divided into four groups:sham group,CLP group,XBJ + axitinib group,and XBJ group.XBJ was intraperitoneally injected 2 h before CLP.Hemodynamic data(blood pressure and heart rate) were recorded.The intestinal microcirculation data of the rats were analyzed via microcirculation imaging.Enzyme-linked immunosorbent assay(ELISA) kits were used to detect the serum levels of interleukin-6(IL-6),C-reactive protein(CRP),and tumor necrosis factor-α(TNF-α) in the rats.Histological analysis and transmission electron microscopy were used to analyze the injury of small intestinal microvascular endothelial cells and small intestinal mucosa in rats.The expression of vascular endothelial growth factor A(VEGF-A),phosphoinositide 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),protein kinase B(Akt),and phosphorylated Akt(p-Akt) in the small intestine was analyzed via Western blotting.RESULTS:XBJ improved intestinal microcirculation dysfunction in septic rats,alleviated the injury of small intestinal microvascular endothelial cells and small intestinal mucosa,and reduced the systemic inflammatory response.Moreover,XBJ upregulated the expression of VEGF-A,p-PI3K/total PI3K,and p-Akt/total Akt in the rat small intestine.CONCLUSION:XBJ may improve intestinal microcirculation dysfunction in septic rats possibly through the VEGF-A/PI3K/Akt signaling pathway.
基金This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)the National Key Research and Development Program of China(No.2022YFA1602404)+1 种基金the National Natural Science Foundation(No.U1832129)the Youth Innovation Promotion Association CAS(No.2017309).
文摘Traditional particle identification methods face timeconsuming,experience-dependent,and poor repeatability challenges in heavy-ion collisions at low and intermediate energies.Researchers urgently need solutions to the dilemma of traditional particle identification methods.This study explores the possibility of applying intelligent learning algorithms to the particle identification of heavy-ion collisions at low and intermediate energies.Multiple intelligent algorithms,including XgBoost and TabNet,were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics(NIMROD-ISiS)and Geant4 simulation.Tree-based machine learning algorithms and deep learning algorithms e.g.TabNet show excellent performance and generalization ability.Adding additional data features besides energy deposition can improve the algorithm’s performance when the data distribution is nonuniform.Intelligent learning algorithms can be applied to solve the particle identification problem in heavy-ion collisions at low and intermediate energies.
文摘BACKGROUND:Intestinal microcirculation dysfunction is an important factor that causes poor prognosis in sepsis patients and is an important pathophysiological basis for the occurrence and development of sepsis.DATA RESOURCES:PubMed,Web of Science,and China National Knowledge Infrastructure(CNKI)were searched from inception to August 1,2021.The search was limited to the English language only.Two reviewers independently identified studies related to intestinal microcirculation dysfunction in sepsis.Exclusion criteria were duplicate articles according to multiple search criteria.RESULTS:Fifty articles were included,and most of them were animal studies.These studies reported pathogenesis,including endothelial dysfunction,leukocyte recruitment and adhesion,microthrombus formation,microcirculation hypoperfusion,and redistribution of intestinal wall blood flow.The monitoring methods of intestinal microcirculation were also diverse,including handheld microscopes,intravital microscopy(IVM),laser Doppler blood flow instruments,laser speckle contrast imaging,tissue refl ectance spectrophotometry,biochemical markers of intestinal ischemia,and histopathological examination.In view of the related pathogenesis of intestinal microcirculation disorder in sepsis,existing studies also have diff erent opinions on its treatment.CONCLUSIONS:Limited by monitoring,there are few clinical studies on intestinal microcirculation dysfunction in sepsis.Related research mainly focuses on basic research,but some progress has also been made.Therefore,this review may provide a reference for future research on intestinal microcirculation dysfunction in sepsis.
基金supported by the National Nature Science Foundation of China(Nos.11875191,11890714,11925502,11935001,and 11961141003)the Strategic Priority Research Program(No.CAS XDB1602)。
文摘With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.
基金This study was supported by a grant from National Natural Science Foundation of China (81871600)
文摘BACKGROUND:Sepsis-induced liver injury is a fatal complication of sepsis.Trichostatin A(TSA)regulates inflammation and autophagy in some human diseases,and forkhead box O3a(FoxO3a)has been shown to regulate autophagy.The present study aims to investigate whether TSA exerts its effects on septic liver injury through the FoxO3a/autophagy signaling pathway.METHODS:A sepsis mouse model was constructed by the cecal ligation and puncture(CLP)method,and AML12 cells were pretreated with lipopolysaccharide(LPS)(1μg/mL)to establish a sepsis cell model.Forty mice were divided into four groups,namely control group,TSA group,CLP group,and CLP+TSA group,with 10 mice in each group.Cells were divided into control group,TSA group,LPS group,and LPS+TSA group.Hematoxylin-eosin(H&E)staining and biochemical methods were used to evaluate liver tissue injury.Enzyme-linked immunosorbent assay(ELISA)was applied to detect the expression of proinflammatory cytokines,and Western blotting and immunofluorescence were used to measure autophagy-related protein expression.RESULTS:Compared with the CLP group(mice),the proinflammatory cytokines(interleukin-β[IL-β]2,665.27±324.90 pg/mL to 2,080.26±373.66 pg/mL;interleukin-6[IL-6]399.01±60.98 pg/mL to 221.90±46.89 pg/mL)and the hepatocyte injury markers(aspartate transaminase[AST]from 198.18±27.07 U/L to 128.42±20.55 U/L;alanine aminotransferase[ALT]from 634.98±74.10 U/L to 478.60±32.56 U/L)were notably decreased after TSA intervention.Moreover,LC3 II and FoxO3a showed an obvious increase and P62 showed an obvious decrease in the CLP+TSA group.Cell experiment results showed the similar trend.After Fox O3a gene was knocked down in AML12 cells,the promotion of autophagy and the improvement of liver enzyme index and inflammation by TSA were weakened.CONCLUSION:TSA may improve the inflammatory response and liver injury in septic mice through Fox O3a/autophagy.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB16)the Strategic Priority Research Program of the CAS(No.XDB34030000)。
文摘The isomer ^(229m)Th is the most promising candidate for clocks based on the nuclear transition because it has the lowest excitation energy of only 8.10±0.17 eV.Various experiments and theories have focused on methods of triggering the transition between the ground state and isomeric state,among which the electronic bridge(EB)is one of the most efficient.In this paper,we propose a new electronic bridge mechanism via two-photon excitation based on quantum optics for a two-level nuclear quantum system.The long-lived 7 s1/2 electronic shell state of^(229m)Th^(3+),with a lifetime of approximately 0.6 s,is chosen as the initial state and the atomic shells(7 s-10 s)could be achieved as virtual states in a two-photon process.When the virtual states return to the initial state 7 s1/2,there is a chance of triggering the nucleus 229Th^(3+),to its isomeric state ^(229m)Th ^(3+),via EB.Two lasers at moderate intensity((10^(10)-10^(14))W/m^(2)),with photon energies near the optical range,are expected to populate the isomer at a saturated rate of approximately 10^(9) s^(-1),which is much higher than that due to other mechanisms.We believe that this twophoton EB scheme can help in the development of nuclear clocks and deserves verification via a series of experiments with ordinary lasers in laboratories.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB160203)the National Natural Science Foundation of China(Nos.11875311 and 11421505).
文摘Investigating deuteron–deuteron(DD)fusion reactions in a plasma environment similar to the early stages of the Big Bang is an important topic in nuclear astrophysics.In this study,we experimentally investigated such reactions,using eight laser beams with the third harmonic impacting on a deuterated polyethylene target at the ShenGuang-II Upgrade laser facility.This work focused on the application of range-filter(RF)spectrometers,assembled from a 70 lm aluminum filter and two CR-39 nuclear track detectors,to measure the yields of primary DD-protons.Based on the track diameter calibration results of 3 MeV protons used to diagnose the tracks on the RF spectrometers,an approximate primary DD-proton yield of(8.5±1.7)×10^6 was obtained,consistent with the yields from similar laser facilities worldwide.This indicates that the RF spectrometer is an effective way to measure primary DD-protons.However,due to the low yields of D^3He-protons and its small track diameter,CR-39 detectors were unable to distinguish it from the background spots.Using other accurate detectors may help to measure these rare events.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB160203)the National Natural Science Foundation of China(Nos.11875311,11421505,and 11475245)
文摘Charged particle diagnosis is an important aspect of laser–plasma experiments conducted at super-intense laser facilities. In recent years, Columbia Resin #39 (CR- 39) detectors have been widely employed for detecting charged particles in laser–plasma experiments. This is because the CR-39 polymer does not respond to electromagnetic pulses or X-rays. This study presents a method for calibrating the relationship between particle energy and track diameter in a CR-39 detector (TasTrak■) using 3-8 MeV protons, 6-30 MeV carbon ions, and 1–5 MeV alpha particles. The particle tracks were compared under the manufacturer’s recommended etching conditions of 6.25 mol/l NaOH at 98℃ and under the widely adopted experimental conditions of 6.25 mol/l NaOH at 70℃. The results show that if the NaOH solution concentration is 6.25 mol/l, then the temperature of 70℃is more suitable for etching proton tracks than 98℃ and employing a temperature of 98 ℃ to etch alpha-particle and carbon-ion tracks can significantly reduce the etching time. Moreover, this result implies that C3+ ion or alpha-particle tracks can be distinguished from proton tracks with energy above 3 MeV by controlling the etching time. This calibration method for the CR-39 detector can be applied to the diagnosis of reaction products in laser–plasma experiments.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934010,U1801661,U1930402,and 11847087)the National Key Research and Development Program of China(Grant No.2016YFA0301200)。
文摘We study the dissipative quantum phase transition(QPT)in a biased Tavis–Cummings model consisting of an ensemble of two-level systems(TLSs)interacting with a cavity mode,where the TLSs are pumped by a drive field.In our proposal,we use a dissipative TLS ensemble and an active cavity with effective gain.In the weak drive-field limit,the QPT can occur under the combined actions of the loss and gain of the system.Owing to the active cavity,the QPT behavior can be much differentiated even for a finite strength of the drive field on the TLS ensemble.Also,we propose to implement our scheme based on the dissipative nitrogen-vacancy(NV)centers coupled to an active optical cavity made from the gainmedium-doped silica.Furthermore,we show that the QPT can be measured by probing the transmission spectrum of the cavity embedding the ensemble of the NV centers.
基金partially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB16 and XDPB09)the National Natural Science Foundation of China(Nos.11890714 and 11421505)the Key Research Program of Frontier Sciences of the CAS(No.QYZDJ-SSW-SLH002)
文摘The neutron yield in the12C(d,n)13N reaction and the proton yield in the12C(d,p)13C reaction have been measured using deuteron beams of energies 0.6-3 MeV.The deuteron beam is delivered from a 4-MeV electrostatic accelerator and bombarded on a thick carbon target.The neutrons are detected at 0°,24°,and 48°and the protons at135°in the laboratory frame.Further,the ratio of the neutron yield to the proton yield was calculated.This can be used to effectively recognize the resonances.The resonances are found at 1.4 MeV,1.7 MeV,and 2.5 MeV in the12C(d,p)13C reaction,and at 1.6 MeV and 2.7 MeV in the12C(d,n)13N reaction.The proposed method provides a way to reduce systematic uncertainty and helps confirm more resonances in compound nuclei.