LiNi_(0.5)Mn_(1.5)O_(4)was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry(XRD),scanning electron microscopy(SEM)and electrochemi...LiNi_(0.5)Mn_(1.5)O_(4)was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry(XRD),scanning electron microscopy(SEM)and electrochemical measurement.XRD patterns show that LiNi_(0.5)Mn_(1.5)O_(4)synthesized under various conditions has cubic spinel structure.SEM images exhibit that the particle size increases with increasing calcination temperature and time.Electro chemical test shows that the LiNi_(0.5)Mn_(1.5)O_(4)calcined at 700℃for 24 h delivers up to 143 mA·h/g,and the capacity retains 132 mA·h/g after 30 cycles.展开更多
Hard carbon is regarded as a promising anode material for sodium-ion batteries,while it remains a huge challenge to initial coulombic efficiency and rate performance.Numerous studies show that critical structural feat...Hard carbon is regarded as a promising anode material for sodium-ion batteries,while it remains a huge challenge to initial coulombic efficiency and rate performance.Numerous studies show that critical structural features in hard carbon,namely defects,crystallites,and close pores,are directly responsible for the electrochemical performance in sodium-ion batteries.Here,we employ bamboo-derived hard carbon to systematically regulate the defects and crystallites in hard carbon by introducing mechanical activation.Benefiting from ball milling,the intermediate product with a high specific area more easily transforms into hard carbon,which possesses abundant closed pores,effective interlayer spacing,and suitable sodium storage defects,helping to improve the sodium ion storage performance.As a result,the hard carbon ball milled for 20 min presents a high reversible capacity of 315.2 mA·h/g at 17.5 mA/g with an initial coulombic efficiency up to 79.3%,as well as good rate and cycling performances.展开更多
基金Project(76600)supported by Postdoctoral Science Foundation of Central South University
文摘LiNi_(0.5)Mn_(1.5)O_(4)was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry(XRD),scanning electron microscopy(SEM)and electrochemical measurement.XRD patterns show that LiNi_(0.5)Mn_(1.5)O_(4)synthesized under various conditions has cubic spinel structure.SEM images exhibit that the particle size increases with increasing calcination temperature and time.Electro chemical test shows that the LiNi_(0.5)Mn_(1.5)O_(4)calcined at 700℃for 24 h delivers up to 143 mA·h/g,and the capacity retains 132 mA·h/g after 30 cycles.
基金Project(2022RC3048)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject support by the Guangdong Greenway Technology Co.Ltd.,China。
文摘Hard carbon is regarded as a promising anode material for sodium-ion batteries,while it remains a huge challenge to initial coulombic efficiency and rate performance.Numerous studies show that critical structural features in hard carbon,namely defects,crystallites,and close pores,are directly responsible for the electrochemical performance in sodium-ion batteries.Here,we employ bamboo-derived hard carbon to systematically regulate the defects and crystallites in hard carbon by introducing mechanical activation.Benefiting from ball milling,the intermediate product with a high specific area more easily transforms into hard carbon,which possesses abundant closed pores,effective interlayer spacing,and suitable sodium storage defects,helping to improve the sodium ion storage performance.As a result,the hard carbon ball milled for 20 min presents a high reversible capacity of 315.2 mA·h/g at 17.5 mA/g with an initial coulombic efficiency up to 79.3%,as well as good rate and cycling performances.