Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems...Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios.展开更多
为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolut...为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。展开更多
For acquiring high energy efficiency and the maximal throughput, a new time slot structure is designed for energy harvesting(EH) cognitive radio(CR). Considering the CR system with EH and cooperative relay, a best coo...For acquiring high energy efficiency and the maximal throughput, a new time slot structure is designed for energy harvesting(EH) cognitive radio(CR). Considering the CR system with EH and cooperative relay, a best cooperative mechanism(BCM)is proposed for CR with EH. To get the optimal estimation performance, a quantum fireworks algorithm(QFA) is designed to resolve the difficulties of maximal throughput and EH, and the proposed cooperative mechanism is called as QFA-BCM. The proposed QFA combines the advantages of quantum computation theory with the fireworks algorithm(FA). Thus the QFA is able to obtain the optimal solution and its convergence performance is proved. By using the new cooperation mechanism and computing algorithm, the proposed QFA-BCM method can achieve comparable maximal throughput in the new timeslot structure. Simulation results have proved that the QFA-BCM method is superior to previous non-cooperative and cooperative mechanisms.展开更多
This paper presents a co-time co-frequency fullduplex(CCFD)massive multiple-input multiple-output(MIMO)system to meet high spectrum efficiency requirements for beyond the fifth-generation(5G)and the forthcoming the si...This paper presents a co-time co-frequency fullduplex(CCFD)massive multiple-input multiple-output(MIMO)system to meet high spectrum efficiency requirements for beyond the fifth-generation(5G)and the forthcoming the sixth-generation(6G)networks.To achieve equilibrium of energy consumption,system resource utilization,and overall transmission capacity,an energy-efficient resource management strategy concerning power allocation and antenna selection is designed.A continuous quantum-inspired termite colony optimization(CQTCO)algorithm is proposed as a solution to the resource management considering the communication reliability while promoting energy conservation for the CCFD massive MIMO system.The effectiveness of CQTCO compared with other algorithms is evaluated through simulations.The results reveal that the proposed resource management scheme under CQTCO can obtain a superior performance in different communication scenarios,which can be considered as an eco-friendly solution for promoting reliable and efficient communication in future wireless networks.展开更多
In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exp...In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.展开更多
For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in ...For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.展开更多
基金supported by the National Natural Science Foundation of China(61571149,62001139)the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Natural Science Foundation of Heilongjiang Province(LH2020F0178).
文摘Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios.
文摘为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。
基金supported by the National Natural Science Foundation of China(61571149)the Special China Postdoctoral Science Foundation(2015T80325)+2 种基金the Heilongjiang Postdoctoral Fund(LBH-Z13054)the China Scholarship Council and the Fundamental Research Funds for the Central Universities(HEUCFP201772HEUCF160808)
文摘For acquiring high energy efficiency and the maximal throughput, a new time slot structure is designed for energy harvesting(EH) cognitive radio(CR). Considering the CR system with EH and cooperative relay, a best cooperative mechanism(BCM)is proposed for CR with EH. To get the optimal estimation performance, a quantum fireworks algorithm(QFA) is designed to resolve the difficulties of maximal throughput and EH, and the proposed cooperative mechanism is called as QFA-BCM. The proposed QFA combines the advantages of quantum computation theory with the fireworks algorithm(FA). Thus the QFA is able to obtain the optimal solution and its convergence performance is proved. By using the new cooperation mechanism and computing algorithm, the proposed QFA-BCM method can achieve comparable maximal throughput in the new timeslot structure. Simulation results have proved that the QFA-BCM method is superior to previous non-cooperative and cooperative mechanisms.
基金supported by the Ph.D.Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(3072020GIP0803)Heilongjiang Province Key Laboratory Fund of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01)+2 种基金the National Natural Science Foundation of China(61571149)the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology。
文摘This paper presents a co-time co-frequency fullduplex(CCFD)massive multiple-input multiple-output(MIMO)system to meet high spectrum efficiency requirements for beyond the fifth-generation(5G)and the forthcoming the sixth-generation(6G)networks.To achieve equilibrium of energy consumption,system resource utilization,and overall transmission capacity,an energy-efficient resource management strategy concerning power allocation and antenna selection is designed.A continuous quantum-inspired termite colony optimization(CQTCO)algorithm is proposed as a solution to the resource management considering the communication reliability while promoting energy conservation for the CCFD massive MIMO system.The effectiveness of CQTCO compared with other algorithms is evaluated through simulations.The results reveal that the proposed resource management scheme under CQTCO can obtain a superior performance in different communication scenarios,which can be considered as an eco-friendly solution for promoting reliable and efficient communication in future wireless networks.
基金supported by the National Natural Science Foundation of China(61571149)the Natural Science Foundation of Heilongjiang Province(LH2020F017)+1 种基金the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Heilongjiang Province Key Laboratory of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01).
文摘In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.
基金This work was supported by the National Natural Science Foundation of China(62073093)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q19098)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(LH2020F017)the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology.
文摘For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.