期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties 被引量:15
1
作者 Raffi Mohammed g.madhusudhan reddy K.Srinivasa Rao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第2期59-71,共13页
High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grad... High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains. 展开更多
关键词 High nitrogen AUSTENITIC stainless steel(HNS) Shielded metal ARC WELDING (SMAW) Gas tungsten ARC WELDING (GTAW) Electron beam WELDING (EBW) Friction stir WELDING (FSW)
在线阅读 下载PDF
Microstructure,mechanical and corrosion behavior of high strength AA7075aluminium alloy friction stir welds-Effect of post weld heat treatment 被引量:21
2
作者 P.Vijaya Kumar g.madhusudhan reddy K.Srinivasa Rao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第4期362-369,共8页
High strength aluminium alloy AA7075(Al-Zn-Mg-Cu) is a precipitate hardenable alloy widely used in the aerospace,defense,marine and automobile industries.Use of the heat treatable aluminium alloys in all these sectors... High strength aluminium alloy AA7075(Al-Zn-Mg-Cu) is a precipitate hardenable alloy widely used in the aerospace,defense,marine and automobile industries.Use of the heat treatable aluminium alloys in all these sectors is ever-increasing owing to their excellent strength-toweight ratio and reasonably good corrosion resistance.The shortage in corrosion resistance,however,usually poses negative concern about their reliability and lifetime when they service in the variable marine environments.These alloys also exhibit low weldability due to poor solidification microstructure,porosity in fusion zone and lose their mechanical properties when they are welded by fusion welding techniques.Friction stir welding(FSW) is a reliable technique to retain the properties of the alloy as the joining takes place in the solid state.The welds are susceptible to corrosion due to the microstructural changes in the weld nugget during FSW.In this work,the effect of post weld treatments,viz.,peak aging(T6) and retrogression & reaging(RRA),on the microstructure,mechanical properties and pitting corrosion has been studied.Friction stir welding of 8 mm-thick AA7075 alloy was carried out.The microstructural changes of base metal and nugget zone of friction stir welds were studied using optical microscopy,scanning electron microscopy and transmission electron microscopy.Tensile and hardness test of base metal and welds has been carried out.Pitting corrosion resistance was determined through dynamic polarization test.It was observed that the hardness and strength of weld were observed to be comparatively high in peak aged(T6) condition but the welds showed poor corrosion resistance.The resistance to pitting corrosion was improved and the mechanical properties were maintained by RRA treatment.The resistance to pitting corrosion was improved in RRA condition with the minimum loss of weld strength. 展开更多
关键词 7075铝合金 高强度铝合金 搅拌摩擦焊 耐腐蚀性 热处理效果 微观结构 焊缝 机械性能
在线阅读 下载PDF
Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing 被引量:7
3
作者 I.SUDHAKAR V.MADHU +1 位作者 g.madhusudhan reddy K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第1期10-17,共8页
Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter t... Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys,7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant Mo S2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy. 展开更多
关键词 Armour GRADE aluminium alloy Friction STIR processing Boron carbide Molybdenum DISULPHIDE WEAR BALLISTIC RESISTANCE
在线阅读 下载PDF
Friction welding of AA6061 to AISI 4340 using silver interlayer 被引量:8
4
作者 SURESH D.MESHRAM g.madhusudhan reddy 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期292-298,共7页
The present work pertains to the study on joining of AA6061 and AISI 4340 through continuous drive friction welding. The welds were evaluated by metallographic examination, X-ray diffraction, electron probe microanaly... The present work pertains to the study on joining of AA6061 and AISI 4340 through continuous drive friction welding. The welds were evaluated by metallographic examination, X-ray diffraction, electron probe microanalysis, tensile test and microhardness. The study reveals that the presence of an intermetallic compound layer at the bonded interface exhibits poor tensile strength and elongation. Mg in AA6061 near to the interface is found to be favourable for the formation and growth of Fe2Al5 intermetallics. Introduction of silver as an interlayer through electroplating on AISI 4340 resulted in accumulation of Si at weld interface, replacing Mg at AA6061 side, thereby reducing the width of intermetallic compound layer and correspondingly increasing the tensile strength. Presence of silver at the interface results in partial replacement of Fe-Al based intermetallic compounds with Ag-Al based compounds. The presence of these intermetallics was confirmed by X-ray diffraction technique. Since Ag-Al phases are ductile in nature, tensile strength is not deteriorated and the silicon segregation at weld interface on AA6061 in the joints with silver interlayer acts as diffusion barrier for Fe and further avoids formation of Fe-Al based intermetallics. A maximum tensile strength of 240 MPa along with 4.9% elongation was obtained for the silver interlayer dissimilar metal welds. The observed trends in tensile properties and hardness were explained in relation to the microstructure. 展开更多
关键词 AISI 摩擦焊接 金属间化合物层 X-射线衍射技术 焊接界面 博士 夹层
在线阅读 下载PDF
Microstructure and pitting corrosion of shielded metal arc welded high nitrogen stainless steel 被引量:8
5
作者 RAFFI MOHAMMED g.madhusudhan reddy K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期237-243,共7页
The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase ... The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy(OM) and field emission scanning electron microscopy(FESEM). Energy back scattered diffraction(EBSD) method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr-Mn-N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite. 展开更多
关键词 耐点蚀性能 高氮不锈钢 焊缝金属 电弧焊接 研究组织 屏蔽 场发射扫描电子显微镜 奥氏体晶粒
在线阅读 下载PDF
Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone-Effect of post weld heat treatment and addition of boron carbide 被引量:6
6
作者 P.VIJAYA KUMAR g.madhusudhan reddy K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第2期166-173,共8页
Friction stir welding(FSW) of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding.In recent times FSW is being used for armor grade AA7075 alu... Friction stir welding(FSW) of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding.In recent times FSW is being used for armor grade AA7075 aluminum alloy in defense,aerospace and marine applications where it has to serve in non uniform loading and corrosive environments.Even though friction stir welds of AA7075 alloy possess better mechanical properties but suffer from poor corrosion resistance.The present work involves use of retrogression and reaging(RRA) post weld heat treatment to improve the corrosion resistance of welded joints of aluminum alloys.An attempt also has been made to change the chemical composition of the weld nugget by adding B4C nano particles with the aid of the FSW on a specially prepared base metal plate in butt position.The effects of peak aged condition(T6),RRA and addition of B4C nano particles on microstructure,hardness and pitting corrosion of nugget zone of the friction stir welds of AA7075 alloy have been studied.Even though RRA improved the pitting corrosion resistance,its hardness was slightly lost.Significant improvement in pitting corrosion resistance was achieved with addition of boron carbide powder and post weld heat treatment of RRA. 展开更多
关键词 7075铝合金 搅拌摩擦焊 焊后热处理 碳化硼颗粒 抗点蚀 微观结构 装甲 7075合金
在线阅读 下载PDF
Microstructure and pitting corrosion resistance of AA2219 Ale Cu alloy friction stir welds e Effect of tool profile 被引量:5
7
作者 Ch VENKATA RAO g.madhusudhan reddy K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第2期123-131,共9页
AA2219 Ale Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness.Fabrication of components used for defence always involves welding.Ev... AA2219 Ale Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness.Fabrication of components used for defence always involves welding.Even though the mechanical properties of the base metal are better,but the alloy suffers from poor mechanical and corrosion properties during fusion welding.To overcome the problems of fusion welding,friction stir welding(FSW) is recognized as an alternative solid state joining method aimed to improve the mechanical and corrosion properties.Tool profile is one of the important variables which affect the performance of the friction stir weld.In the present work the effect of tool profile on the microstructure and pitting corrosion of AA2219 aluminiumecopper alloy was studied.Electron backscattered diffraction results established that the grain size and orientation of weld nugget of triangle profile is finer than that of conical profile.Differential scanning calorimetric results show the evidence of precipitate dissolution during FSW.It was found that the microstructure changes,such as grain size and its orientation precipitate dissolution during FSW influence the hardness and corrosion behaviour.Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for triangle profile tool compared to conical profile which is attributed to material flow and strengthening precipitate morphology in various zones.Higher amount of heat generation during FSW made using triangle profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone and coarsening in thermo mechanically affected zone(TMAZ) and heat affected zone(HAZ). 展开更多
关键词 AL-CU合金 搅拌摩擦焊接 微观结构 轮廓 点蚀 摩擦搅拌焊接 电子背散射衍射 机械性能
在线阅读 下载PDF
Process parameters-weld bead geometry interactions and their influence on mechanical properties:A case of dissimilar aluminium alloy electron beam welds 被引量:3
8
作者 P.Mastanaiah Abhay Sharma g.madhusudhan reddy 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第2期137-150,共14页
Prediction of weld bead geometry is always an interesting and challenging research topic as it involves understanding of complex multi input and multi output system. The weld bead geometry has a profound impact on the... Prediction of weld bead geometry is always an interesting and challenging research topic as it involves understanding of complex multi input and multi output system. The weld bead geometry has a profound impact on the load bearing capability of a weld joint, which in-turn decides the performance in real time service conditions. The present study introduces a novel approach of detecting a relationship between weld bead geometry and mechanical properties(e.g. tensile load) for the purpose of catering the best the process could offer. The significance of the proposed approach is demonstrated by a case of dissimilar aluminium alloy(AA2219 and AA5083) electron beam welds. A mathematical model of tensile braking load as a function of geometrical attributes of weld bead geometry is presented. The results of investigation suggests the effective thickness of weld-a geometric parameter of weld bead has the most significant influence on tensile breaking load of dissimilar weld joint. The observations on bead geometry and the mechanical properties(microhardness, ultimate tensile load and face bend angle) are correlated with detailed metallurgical analysis. The fusion zone of dissimilar electron beam weld has finer grain size with a moderate evaporation and segregation of alloying elements magnesium and copper respectively.The mechanical properties of weld joint are controlled by optimum bead geometry and HAZ softening in weaker AA5083 Al alloy. 展开更多
关键词 Electron beam WELDING AA2219 AA5083 BEAD GEOMETRY TENSILE BREAKING load
在线阅读 下载PDF
Friction stir surfacing of cast A356 aluminiumesilicon alloy with boron carbide and molybdenum disulphide powders 被引量:2
9
作者 R.SRINIVASU A.SAMBASIVA RAO +1 位作者 g.madhusudhan reddy K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第2期140-146,共7页
Good castability and high strength properties of Ale Si alloys are useful in defence applications like torpedoes,manufacture of Missile bodies,and parts of automobile such as engine cylinders and pistons.Poor wear res... Good castability and high strength properties of Ale Si alloys are useful in defence applications like torpedoes,manufacture of Missile bodies,and parts of automobile such as engine cylinders and pistons.Poor wear resistance of the alloys is major limitation for their use.Friction stir processing(FSP) is a recognized surfacing technique as it overcomes the problems of fusion route surface modification methods.Keeping in view of the requirement of improving wear resistance of cast aluminiumesilicon alloy,friction stir processing was attempted for surface modification with boron carbide(B4C) and molybdenum disulfide(Mo S2) powders.Metallography,micro compositional analysis,hardness and pin-on-disc wear testing were used for characterizing the surface composite coating.Microscopic study revealed breaking of coarse silicon needles and uniformly distributed carbides in the A356 alloy matrix after FSP.Improvement and uniformity in hardness was obtained in surface composite layer.Higher wear resistance was achieved in friction stir processed coating with carbide powders.Addition of solid lubricant Mo S2 powder was found to improve wear resistance of the base metal significantly. 展开更多
关键词 A356合金 二硫化钼 堆焊技术 硅合金 钼粉末 碳化硼 摩擦 铸铝
在线阅读 下载PDF
Gas tungsten arc welding of ZrB_2-SiC based ultra high temperature ceramic composites 被引量:2
10
作者 R.V.KRISHNARAO g.madhusudhan reddy 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期188-196,共9页
The difficulty in fabricating the large size or complex shape limits the application of ZrB2-SiC composites. Joining them by fusion welding without or with preheating, controlled cooling under protective gas shield le... The difficulty in fabricating the large size or complex shape limits the application of ZrB2-SiC composites. Joining them by fusion welding without or with preheating, controlled cooling under protective gas shield leads to thermal shock failure or porosity at the weld interface. In the present work, a filler material of(ZrB2-SiC-B4C-YAG) composite with oxidation resistance and thermal shock resistance was produced in the form of welding wire. Using the filler, gas tungsten arc welding(GTAW) was performed without employing preheating, post controlled cooling and extraneous protective gas shield to join hot pressed ZrB2-SiC(ZS), and pressureless sintered ZrB2-SiC-B4C-YAG(ZSBY) composites to themselves. The fusion welding resulted in cracking and non-uniform joining without any filler material. The weld interfaces of the composites were very clean and coherent. The Vickers micro-hardness across the weld interface was found to increase due to the increase in the volume % of both SiC and B4C in the filler material. The shear strength of the weld was about 50% of the flextural strength of the parent composite. 展开更多
关键词 陶瓷基复合材料 焊接界面 钨极氩弧焊 气体保护 超高温 填充材料 ZRB2 形状复杂
在线阅读 下载PDF
Influence of process parameters on physical dimensions of AA6063 aluminium alloy coating on mild steel in friction surfacing 被引量:2
11
作者 B.VIJAYA KUMAR g.madhusudhan reddy T.MOHANDAS 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期275-281,共7页
An attempt is made in the present study to obtain the relationships among process parameters and physical dimensions of AA6063 aluminium alloy coating on IS2062 mild steel obtained through friction surfacing and their... An attempt is made in the present study to obtain the relationships among process parameters and physical dimensions of AA6063 aluminium alloy coating on IS2062 mild steel obtained through friction surfacing and their impact on strength and ductility of the coating. Factorial experimental design technique was used to investigate and select the parameter combination to achieve a coating with adequate strength and ductility. Spindle speed, axial force and table traverse speed were observed to be the most significant factors on physical dimensions. It was observed that the thickness of the coating decreased as the coating width increased. In addition, the width and thickness of the coatings are higher at low and high torques. At intermediate torque values, when the force is high, the width of the coating is high, and its thickness is thin; and when the force is low, the width and thickness are low. The interaction effect between axial force(F)-table traverse speed(Vx) and spindle speed(N)-table traverse speed(Vx) produced an increasing effect on coating width and thickness, but other interactions exhibited decreasing influence. It has also been observed that sound coatings could be obtained in a narrow set of parameter range as the substrate-coating materials are metallurgically incompatible and have a propensity to form brittle intermetallics. 展开更多
关键词 合金涂层 摩擦表面 尺寸 物理 工艺参数 碳钢 涂层厚度 试验设计技术
在线阅读 下载PDF
Pitting corrosion resistance and bond strength of stainless steel overlay by friction surfacing on high strength low alloy steel 被引量:2
12
作者 Amit Kumar SINGH g.madhusudhan reddy K.Srinivas RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期299-307,共9页
Surface modification is essential for improving the service properties of components. Cladding is one of the most widely employed methods of surface modification. Friction surfacing is a candidate process for depositi... Surface modification is essential for improving the service properties of components. Cladding is one of the most widely employed methods of surface modification. Friction surfacing is a candidate process for depositing the corrosion resistant coatings. Being a solid state process, it offers several advantages over conventional fusion based surfacing process. The aim of this work is to identify the relationship between the input variables and the process response and develop the predictive models that can be used in the design of new friction surfacing applications. In the current work, austenitic stainless steel AISI 304 was friction surfaced on high strength low alloy steel substrate. Friction surfacing parameters,such as mechtrode rotational speed, feed rate of substrate and axial force on mechtrode, play a major role in determining the pitting corrosion resistance and bond strength of friction surfaced coatings. Friction surfaced coating and base metal were tested for pitting corrosion by potentiodynamic polarization technique. Coating microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffraction. Coatings in the as deposited condition exhibited strain-induced martensite in austenitic matrix. Pitting resistance of surfaced coatings was found to be much lower than that of mechtrode material and superior to that of substrate. A central composite design with three factors(mechtrode rotational speed, substrate traverse speed, axial load on mechtrode) and five levels was chosen to minimize the number of experimental conditions. Response surface methodology was used to develop the model. In the present work, an attempt has been made to develop a mathematical model to predict the pitting corrosion resistance and bond strength by incorporating the friction surfacing process parameters. 展开更多
关键词 奥氏体不锈钢 摩擦堆焊 粘结强度 低合金 高强度 抗蚀性 钢表面 耐点蚀性能
在线阅读 下载PDF
Effect of welding processes and consumables on fatigue crack growth behaviour of armour grade quenched and tempered steel joints 被引量:2
13
作者 G.MAGUDEESWARAN V.BALASUBRAMANIAN g.madhusudhan reddy 《Defence Technology(防务技术)》 SCIE EI CAS 2014年第1期47-59,共13页
Quenched and Tempered(Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking(HIC) in th... Quenched and Tempered(Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking(HIC) in the heat affected zone(HAZ) after welding. The use of austenitic stainless steel(ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel(LHF) consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding(SMAW) and Flux cored arc welding(FCAW) were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints. 展开更多
关键词 焊接工艺 疲劳裂纹 扩展行为 消耗品 钢接头 装甲 回火 淬火
在线阅读 下载PDF
Influence of tool pin profile on microstructure and corrosion behaviour of AA2219 Al-Cu alloy friction stir weld nuggets 被引量:1
14
作者 Ch.VENKATA RAO g.madhusudhan reddy K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期197-208,共12页
To overcome the problems of fusion welding of aluminium alloys, the friction stir welding(FSW) is recognized as an alternative joining method to improve the mechanical and corrosion properties. Tool profile is one of ... To overcome the problems of fusion welding of aluminium alloys, the friction stir welding(FSW) is recognized as an alternative joining method to improve the mechanical and corrosion properties. Tool profile is one of the important variables which affect the performance of the FS weld. In the present work, the effect of tool profile on the weld nugget microstructure and pitting corrosion of AA2219 aluminium-copper alloy was studied. FSW of AA2219 alloy was carried out using five profiles, namely conical, square, triangle, pentagon and hexagon. The temperature measurements were made in the region adjacent to the rotating pin. It was observed that the peak temperature is more in hexagonal tool pin compared to the welds produced with other tool pin profiles. It is observed that the extensive deformation experienced at the nugget zone and the evolved microstructure strongly influences the hardness and corrosion properties of the joint during FSW. It was found that the microstructure changes like grain size, misorientation and precipitate dissolution during FSW influence the hardness and corrosion behaviour. Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for hexagon profile tool compared to other profiles, which was attributed to material flow and strengthening precipitate morphology in nugget zone. Higher amount of heat generation in FS welds made with hexagonal profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone. 展开更多
关键词 AL-CU合金 搅拌摩擦焊 微观结构 焊缝区 刀具 腐蚀行为 焊接接头性能 耐腐蚀性能
在线阅读 下载PDF
Effect of Hardfacing Consumables on Ballistic Performance of Q&T Steel Joints 被引量:1
15
作者 M.BALAKRISHNAN V.BALASUBRAMANIAN g.madhusudhan reddy 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第4期249-258,共10页
This study was carried out to evaluate the effect of hardfacing consumables on ballistic performance of armour grade quenched and tempered(Q&T)steel welded joints.To evaluate the effect of hardfacing consumables,j... This study was carried out to evaluate the effect of hardfacing consumables on ballistic performance of armour grade quenched and tempered(Q&T)steel welded joints.To evaluate the effect of hardfacing consumables,joints were fabricated using 4 mm thick tungsten carbide(WC)/chromium carbide(CrC)hardfaced middle layer;above and below which austenitic stainless steel(SS)layers were deposited on both sides of the hardfaced interlayer.Shielded metal arc welding(SMAW)process were used to deposite all(hardfaced layer and SS layers)layers.The fabricated joints were evaluated for its ballistic performance,and the results were compared with respect to depth of penetration(DOP)on weld metal and heat-affected zone(HAZ)locations.From the ballistic test results,it was observed that both the joints successfully stopped the bullet penetration at weld center line.Of the two joints,the joint made with CrC hardfaced interlayer(CAHA)offered better ballistic resistance at weld metal.This is because its hardness is higher due to the presence of primary carbides of needle shape,polyhedral shape and eutectic matrix containing a mixture of gt M7C3carbides in the CrC hardfaced interlayer.The scattering hardness level in the WC interlayer,the matrix decomposition resulted lower hardness and the co-existence of d ferrite in the interface between hardfacing and SS root/SS cap could be attributed to the inferior ballistic resistance of the joint made with WC hardfaced interlayer(WAHA joint). 展开更多
关键词 弹道性能 耐磨堆焊 M7C3型碳化物 耗材 焊接金属 焊缝金属 初生碳化物 淬火效果
在线阅读 下载PDF
Ballistic behavior of boron carbide reinforced AA7075 aluminium alloy using friction stir processing-An experimental study and analytical approach 被引量:1
16
作者 I.SUDHAKAR g.madhusudhan reddy K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第1期25-31,共7页
High strength-to-weight ratio of non-ferrous alloys, such as aluminium, magnesium and titanium alloys, are considered to be possible replacement of widely accepted steels in transportation and automobile sectors. Amon... High strength-to-weight ratio of non-ferrous alloys, such as aluminium, magnesium and titanium alloys, are considered to be possible replacement of widely accepted steels in transportation and automobile sectors. Among these alloys, magnesium is self explosive and titanium is costlier, and aluminium is most likely to replace steels. Application of aluminium or its alloys is also thought of as an appropriate replacement in defence field, especially to enhance the easiness in mobility of combat vehicles while maintaining the same standard as that of conventional armour grade steels. Hence most of the investigations have been confined to aluminium or its alloys as base material and open an era of developing the newer composite materials to address the major limitation, i.e. tribological properties. The surface composites can be fabricated by incorporating the ceramic carbides like silicon carbide, carbides of transition metals and oxides of aluminium using surface modification techniques, such as high energy laser melt treatment, high energy electron beam irradiation and thermal spray process which are based on fusion route. These techniques yield the fusion related problems, such as interfacial reaction, pin holes, shrinkage cavities or voids and other casting related defects, and pave the way to need of an efficient technique which must be based on solid state. Recently developed friction stir processing technique was used in the present investigation for surface modification of AA7075 aluminum alloy, which is an alternative to steels. In the present investigation, 160 μm sized boron carbide powder was procured and was reduced to 60 μm and 30 μm using high energy ball mill. Subsequently these powders were used to fabricate the surface composites using friction stir processing.Ballistic performance testing as per the military standard(JIS.0108.01) was carried out. In the present work, an analytical method of predicting the ballistic behavior of surface composites was developed. This method was based on energy balance, i.e., the initial energy of impact is same as that of energy absorbed by multi layers. An attempt also has been made to validate the analytical results with the experimental findings. Variation between the analytical and experimental results may be accounted due to the assumptions considering such as isotropic behavior of target and shearing area of contact as cylindrical instead of conical interface As the analytical model yields the ballistic performance in the closer proximity of experimentally obtained, it can be considered to be an approximation to evaluate the ballistic performance of targets. 展开更多
关键词 AA7075 aluminium alloy Friction stir processing(FSP) Surface metal matrix composite(SMMC) Boron carbide(B4C) Ballistic performance TARGET
在线阅读 下载PDF
Microstructure and corrosion behaviour of gas tungsten arc welds of maraging steel
17
作者 g.madhusudhan reddy K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第1期48-55,共8页
Superior properties of maraging steels make them suitable for the fabrication of components used for military applications like missile covering, rocket motor casing and ship hulls. Welding is the main process for fab... Superior properties of maraging steels make them suitable for the fabrication of components used for military applications like missile covering, rocket motor casing and ship hulls. Welding is the main process for fabrication of these components, while the maraging steels can be fusion welded using gas tungsten arc welding(GTAW) process. All these fabricated components require longer storage life and a major problem in welds is susceptible to stress corrosion cracking(SCC). The present study is aimed at studying the SCC behaviour of MDN 250(18% Ni) steel and its welds with respect to microstructural changes. In the present study, 5.2 mm thick sheets made of MDN 250 steel in the solution annealed condition was welded using GTAW process. Post-weld heat treatments of direct ageing(480 C for 3 h), solutionizing(815 C for 1 h) followed by ageing and homogenizing(1150 C for 1 h) followed by ageing were carried out. A mixture of martensite and austenite was observed in the microstructure of the fusion zone of solutionized and direct aged welds and only martensite in as-welded condition. Homogenization and ageing treatment have eliminated reverted austenite and elemental segregation. Homogenized welds also exhibited a marginal improvement in the corrosion resistance compared to those in the as-welded, solutionized and aged condition. Constant load SCC test data clearly revealed that the failure time of homogenized weld is much longer compared to other post weld treatments, and the homogenization treatment is recommended to improve the SCC life of GTA welds of MDN 250 Maraging steel. 展开更多
关键词 18% Ni maraging steel GAS TUNGSTEN ARC welding Post weld heat TREATMENT Solutionising Ageing TREATMENT PITTING corrosion Stress corrosioncracking (SCC)
在线阅读 下载PDF
Preface
18
作者 K.Prasad Rao g.madhusudhan reddy +2 位作者 Huijie Liu V.Balasubramanian G.Magudeeswaran 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期187-187,共1页
The increased use of newer materials adds to challenge of joining and fabrication in sectors that manufacture defence components.Thus,Materials Joining is a state of art in today's industrial scenario that integra... The increased use of newer materials adds to challenge of joining and fabrication in sectors that manufacture defence components.Thus,Materials Joining is a state of art in today's industrial scenario that integrates structures for military applications.Hence updating of knowledge in materials joining is very much essential for technocrats,practicing engi- 展开更多
关键词 知识更新 新材料 军事应用 集成结构 技术人员 研究人员 工程师 制造
在线阅读 下载PDF
Influence of welding consumables on tensile and impact properties of multi-pass SMAW Armox 500T steel joints vis-a-vis base metal
19
作者 Ambuj Saxena A.Kumaraswamy +1 位作者 g.madhusudhan reddy Vemuri Madhu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第3期188-195,共8页
In this investigation, comparative study of tensile and impact properties of multi-pass SMAW Armox500 T steel joints fabricated by austenitic stainless steel(ASS) and low hydrogen ferritic steel(LHF)consumables vis-a-... In this investigation, comparative study of tensile and impact properties of multi-pass SMAW Armox500 T steel joints fabricated by austenitic stainless steel(ASS) and low hydrogen ferritic steel(LHF)consumables vis-a-vis base metal was carried out. The tensile tests were conducted on computer controlled Walter t Bai Ag UTM at a nominal strain rate of 10à3 sà1. Subsequently, charpy impact tests were carried out on an instrumented Zwick-Roell test setup to obtain load vs. displacement and maximum energy absorbed vs. displacement of the specimen. It was observed that, the joint efficiency of weldment processed by LHF consumable was 41.7% and weldment processed by ASS was 30.6% of its base metal indicating the influence of electrode consumable on tensile properties of the joints. On the contrary, impact toughness of weldment processed by ASS was 20% more and weldment processed by LHF was 12% less than that of base metal. Microstructural studies also revealed that, ASS can be considered as a candidate welding consumable for good strain hardening and toughness of the welding joint in impact applications. However, LHF steel consumable is recommended for welding joints that requires higher joint efficiency under tensile loading conditions. 展开更多
关键词 SMAW 不锈钢 金属相 焊接 张力 关节 性质 传递
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部