Data-driven paradigms are well-known and salient demands of future wireless communication. Empowered by big data and machine learning techniques,next-generation data-driven communication systems will be intelligent wi...Data-driven paradigms are well-known and salient demands of future wireless communication. Empowered by big data and machine learning techniques,next-generation data-driven communication systems will be intelligent with unique characteristics of expressiveness, scalability, interpretability, and uncertainty awareness, which can confidently involve diversified latent demands and personalized services in the foreseeable future. In this paper, we review a promising family of nonparametric Bayesian machine learning models,i.e., Gaussian processes(GPs), and their applications in wireless communication. Since GP models demonstrate outstanding expressive and interpretable learning ability with uncertainty, they are particularly suitable for wireless communication. Moreover, they provide a natural framework for collaborating data and empirical models(DEM). Specifically, we first envision three-level motivations of data-driven wireless communication using GP models. Then, we present the background of the GPs in terms of covariance structure and model inference. The expressiveness of the GP model using various interpretable kernels, including stationary, non-stationary, deep and multi-task kernels,is showcased. Furthermore, we review the distributed GP models with promising scalability, which is suitable for applications in wireless networks with a large number of distributed edge devices. Finally, we list representative solutions and promising techniques that adopt GP models in various wireless communication applications.展开更多
基金supported in part by the National Key R&D Program of China with grant No. 2018YFB1800800by the Basic Research Project No. HZQB-KCZYZ-2021067 of Hetao Shenzhen-HK S&T Cooperation Zone+3 种基金by Natural Science Foundation of China (NSFC) with grants No. 92067202 and No. 62106212by Shenzhen Outstanding Talents Training Fund 202002by Guangdong Research Projects No. 2017ZT07X152 and No. 2019CX01X104by China Postdoctoral Science Foundation with grant No. 2020M671899。
文摘Data-driven paradigms are well-known and salient demands of future wireless communication. Empowered by big data and machine learning techniques,next-generation data-driven communication systems will be intelligent with unique characteristics of expressiveness, scalability, interpretability, and uncertainty awareness, which can confidently involve diversified latent demands and personalized services in the foreseeable future. In this paper, we review a promising family of nonparametric Bayesian machine learning models,i.e., Gaussian processes(GPs), and their applications in wireless communication. Since GP models demonstrate outstanding expressive and interpretable learning ability with uncertainty, they are particularly suitable for wireless communication. Moreover, they provide a natural framework for collaborating data and empirical models(DEM). Specifically, we first envision three-level motivations of data-driven wireless communication using GP models. Then, we present the background of the GPs in terms of covariance structure and model inference. The expressiveness of the GP model using various interpretable kernels, including stationary, non-stationary, deep and multi-task kernels,is showcased. Furthermore, we review the distributed GP models with promising scalability, which is suitable for applications in wireless networks with a large number of distributed edge devices. Finally, we list representative solutions and promising techniques that adopt GP models in various wireless communication applications.