Aqueous Zn ion batteries(ZIBs)have received extensive attention due to their intrinsic safety,high abundance,and low cost.However,uncontrolled dendrite growth and water-induced side reactions at electrod e/electrolyte...Aqueous Zn ion batteries(ZIBs)have received extensive attention due to their intrinsic safety,high abundance,and low cost.However,uncontrolled dendrite growth and water-induced side reactions at electrod e/electrolyte interfaces hinder the advancement of ZIBs.Herein,density functional theory(DFT)calculation indicates that Zn heptafluorobutyrate can facilitate uniform Zn^(2+)deposition by leveraging the abundant zincophilic groups(e.g.,-COO^(-)and-CF)and inhibit water-induced side reactions due to the presence of hydrophobic carbon chains.A Zn heptafluorobutyrate protective layer(denoted as ZFA)is constructed on the metallic Zn surface in situ by acid etching process to control Zn^(2+)desolvation and nucleation behaviors,ensuring enhanced reversibility and stability of Zn anodes.Consequently,the Zn@ZFA anode demonstrates stable operation for more than 2200 h at 1 mA cm^(-2)and over 7300cycles at 40 mA cm^(-2),with high Coulombic efficiency of 99.8%over 1900 cycles at 5 mA cm^(-2).Impressively,Zn@ZFA‖VO_(2)full cell achieves exceptional cycle life(204 mA h g^(-1)after 750 cycles at 3 A g^(-1))and remarkable rate performance(236 mA g^(-1)at 10 A g^(-1)).This work provides an insightful guidance for constructing a protection layer of dendrite-free Zn anodes for high-performance ZIBs.展开更多
基金supported by the National Natural Science Foundation of China(52372164,52302085,and 52172174)the Anhui Provincial Natural Science Foundation(2308085Y05 and 2308085QE143)+1 种基金the Key Natural Science Research Project of Anhui Provincial Education Department(2023AH050094)the startup grants from Anhui University(S020318031/001).
文摘Aqueous Zn ion batteries(ZIBs)have received extensive attention due to their intrinsic safety,high abundance,and low cost.However,uncontrolled dendrite growth and water-induced side reactions at electrod e/electrolyte interfaces hinder the advancement of ZIBs.Herein,density functional theory(DFT)calculation indicates that Zn heptafluorobutyrate can facilitate uniform Zn^(2+)deposition by leveraging the abundant zincophilic groups(e.g.,-COO^(-)and-CF)and inhibit water-induced side reactions due to the presence of hydrophobic carbon chains.A Zn heptafluorobutyrate protective layer(denoted as ZFA)is constructed on the metallic Zn surface in situ by acid etching process to control Zn^(2+)desolvation and nucleation behaviors,ensuring enhanced reversibility and stability of Zn anodes.Consequently,the Zn@ZFA anode demonstrates stable operation for more than 2200 h at 1 mA cm^(-2)and over 7300cycles at 40 mA cm^(-2),with high Coulombic efficiency of 99.8%over 1900 cycles at 5 mA cm^(-2).Impressively,Zn@ZFA‖VO_(2)full cell achieves exceptional cycle life(204 mA h g^(-1)after 750 cycles at 3 A g^(-1))and remarkable rate performance(236 mA g^(-1)at 10 A g^(-1)).This work provides an insightful guidance for constructing a protection layer of dendrite-free Zn anodes for high-performance ZIBs.