期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Facile Synthesis of N-Doped Graphene-Like Carbon Nanoflakes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction 被引量:7
1
作者 Daguo Gu Yao Zhou +3 位作者 Ruguang Ma fangfang wang Qian Liu Jiacheng wang 《Nano-Micro Letters》 SCIE EI CAS 2018年第2期114-125,共12页
A series of N-doped carbon materials(NCs)were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile onestep pyrolysis method. The characterization of microstructural featur... A series of N-doped carbon materials(NCs)were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile onestep pyrolysis method. The characterization of microstructural features shows that the NCs samples are composed of few-layered graphene-like nanoflakes with controlled in situ N doping, which is attributed to the confined pyrolysis of citric acid within the interlayers of the dicyandiamide-derived g-C_3N_4 with high nitrogen contents. Evidently, the pore volumes of the NCs increased with the increasing content of dicyandiamide in the precursor. Among these samples, the NCs nanoflakes prepared with the citric acid/dicyandiamide mass ratio of 1:6, NC-6,show the highest N content of ~6.2 at%, in which pyridinic and graphitic N groups are predominant. Compared to the commercial Pt/C catalyst, the as-prepared NC-6 exhibits a small negative shift of ~66 mV at the half-wave potential, demonstrating excellent electrocatalytic activity in the oxygen reduction reaction. Moreover, NC-6 also shows better long-term stability and resistance to methanol crossover compared to Pt/C. The efficient and stable performance are attributed to the graphene-like microstructure and high content of pyridinic and graphitic doped nitrogen in the sample, which creates more active sites as well as facilitating charge transfer due to the close four-electron reaction pathway. The superior electrocatalytic activity coupled with the facile synthetic method presents a new pathway to cost-effective electrocatalysts for practical fuel cells or metal–air batteries. 展开更多
关键词 Nitrogen doping Graphene-like Carbon nanoflakes ELECTROCATALYST Oxygen reduction reaction
在线阅读 下载PDF
Mixed B-site ruddlesden-popper phase Sr_(2)(Ru_(x)Ir_(1-x))O_(4) enables enhanced activity for oxygen evolution reaction 被引量:1
2
作者 fangfang wang Cheng Zhang Hong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期623-629,I0015,共8页
Development of high performance electrocatalysts for oxygen evolution reaction (OER) in acidic media remains a challenge for direct water splitting using an electrolyzer.Recently,Ruddlesden-Popper phase Sr_(2)IrO_(4)w... Development of high performance electrocatalysts for oxygen evolution reaction (OER) in acidic media remains a challenge for direct water splitting using an electrolyzer.Recently,Ruddlesden-Popper phase Sr_(2)IrO_(4)was discovered to be an efficient OER catalyst because of its unique structure,which consists of layers of both rock salt and perovskite phases simultaneously.In this study,we prepared a series of B-site mixed,Ruddlesden-Popper phase of Sr_(2)(Ru_(x)Ir_(1-x))O_(4) and examined their electrocatalytic properties for OER in acidic media.Through partial substitution of Ru in the B-site of Ruddlesden-Popper phase materials,we achieved much enhanced OER performance for this series of Sr_(2)(Ru_(x)Ir_(1-x))O_(4)electrocatalysts,among which Sr_(2)(Ru_(0.5)Ir_(0.5))O_(4)exhibited the best catalytic activity with a current density of 8.06 m A/cm^(2) at 1.55 V and a Tafel slope of 47 m V/dec.This current density is three times higher than that of Sr_(2)Ir O_(4).The B-site mixed Sr_(2)(Ru_(0.5)Ir_(0.5))O_(4)retained good stability in acidic conditions for>24 h at 10 m A/cm^(2).A range of techniques were used to characterize the crystal and electronic structures of the Sr_(2)(Ru_(x)Ir_(1-x))O_(4)samples.Our data indicate that the improved OER performance can be correlated to the formation of high level of hydroxyl groups and the enhanced overlap between Ir/Ru 4d and O_(2)p orbitals,revealing a new way for the design of efficient OER electrocatalysts by regulating their composition and electronic structures. 展开更多
关键词 Water splitting OER ELECTROCATALYST RUDDLESDEN-POPPER Strontium ruthenium iridium oxide
在线阅读 下载PDF
Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio
3
作者 Chang Liu Jing Liang +7 位作者 fangfang wang Chaojie Ma Kehai Liu Can Liu Hao Hong Huaibin Shen Kaihui Liu Enge wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期601-606,共6页
Improving the emission performance of colloidal quantum dots(QDs)is of paramount importance for their applications on light-emitting diodes(LEDs),displays and lasers.A highly promising approach is to tune the carrier ... Improving the emission performance of colloidal quantum dots(QDs)is of paramount importance for their applications on light-emitting diodes(LEDs),displays and lasers.A highly promising approach is to tune the carrier recombination channels and lifetime by exploiting the energy transfer process.However,to achieve this precise emission optimization,quantitative modulation on energy transfer efficiency is highly desirable but still challenging.Here,we demonstrate a convenient approach to realize tunable energy transfer efficiency by forming QDs mixture with controllable donor/acceptor(D/A)ratio.With the mixing ratio ranging from 16/1 to 1/16,the energy transfer efficiency could be effectively tuned from near zero to~70%.For the high mixing ratio of 16/1,acceptors obtain adequate energy supplied by closely surrounding donors,leading to~2.4-fold PL enhancement.While for the low mixing ratio,the ultrafast and efficient energy extraction process directly suppresses the multi-exciton and Auger recombination in the donor,bringing about a higher threshold.The facile modulation of emission performance by controllably designed mixing ratio and quantitatively tunable energy transfer efficiency will facilitate QD-based optoelectronic and photovoltaic applications. 展开更多
关键词 colloidal quantum dots energy transfer emission engineering Auger suppression
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部