This research work deals with the design of a tunable muzzle brake [10] for a rifle chambered in 5.56 x 45 NATO ammunition. It proposes to solve the problem of handling differences from shooter to shooter by incorpora...This research work deals with the design of a tunable muzzle brake [10] for a rifle chambered in 5.56 x 45 NATO ammunition. It proposes to solve the problem of handling differences from shooter to shooter by incorporating the feature of tunability. Beside this, it also solves the problem of requirement of optimum recoil in short recoil weapons. This innovation gives this design an edge over its already existing counterparts in the market. The product is designed using the internal ballistics calculations and the investigations been performed using solidworks flow simulation tool and ANSYS static structural to check the parameters like velocity distribution, pressure growth, and muzzle brake force along the series of ports and comparison of the so found results with those devised by the authors of the documents mentioned in references. This assures the market adaptability of the product for satisfactory performance, when brought among its already existing counterpart, though with a slight edge over them due to tunability. The results so found shall be concluded satisfactory regarding the performance of muzzle brake.展开更多
Machine gun barrels differ from their rifle counterparts in terms of profile.To support high rates of sustained fire,machine gun barrels are made thicker in order to dissipate more heat and maintain their flexural rig...Machine gun barrels differ from their rifle counterparts in terms of profile.To support high rates of sustained fire,machine gun barrels are made thicker in order to dissipate more heat and maintain their flexural rigidity and thus accuracy,but on other hand they also contribute in weight addition to weapon.This investigation deals with comparison between a conventional machine gun barrel and an improved innovative design having T-fins,both having same weight and chambered in 5.56×45 NATO ammunition,to compare their structural and harmonic characteristics which were parameterized by factors such as modal spectrum,directional deformation at muzzle ends during a single shot fire and harmonic behaviour at corresponding range of exciting frequencies.The solid models of both the barrels having same weight,were created using Solidworks.The continuous input data functions were generated by MATLAB using the field tested discreet data points.The generated velocity-distance functions were converted into time dependent functions using integration algorithms to calculate transient parameters such as time steps,excitation frequency range,angle of rotation of projectile and its angular velocity.The dynamic condition simulated the varying nature of forces due to eccentricity in projectile and this data was fed to a time step study using ANSYS transient structural work bench followed by modal and harmonic analysis.The results showed a significant reduction in muzzle end deformation which thus proved that the T-finned barrel,although had same weight as that of the conventional one,but had better structural and harmonic characteristics,and hence it would inherit better firing accuracy.展开更多
基金supported by Department of Mechanical Engineering, Maulana Azad National Institute of Technology (MANIT) Bhopal,India
文摘This research work deals with the design of a tunable muzzle brake [10] for a rifle chambered in 5.56 x 45 NATO ammunition. It proposes to solve the problem of handling differences from shooter to shooter by incorporating the feature of tunability. Beside this, it also solves the problem of requirement of optimum recoil in short recoil weapons. This innovation gives this design an edge over its already existing counterparts in the market. The product is designed using the internal ballistics calculations and the investigations been performed using solidworks flow simulation tool and ANSYS static structural to check the parameters like velocity distribution, pressure growth, and muzzle brake force along the series of ports and comparison of the so found results with those devised by the authors of the documents mentioned in references. This assures the market adaptability of the product for satisfactory performance, when brought among its already existing counterpart, though with a slight edge over them due to tunability. The results so found shall be concluded satisfactory regarding the performance of muzzle brake.
文摘Machine gun barrels differ from their rifle counterparts in terms of profile.To support high rates of sustained fire,machine gun barrels are made thicker in order to dissipate more heat and maintain their flexural rigidity and thus accuracy,but on other hand they also contribute in weight addition to weapon.This investigation deals with comparison between a conventional machine gun barrel and an improved innovative design having T-fins,both having same weight and chambered in 5.56×45 NATO ammunition,to compare their structural and harmonic characteristics which were parameterized by factors such as modal spectrum,directional deformation at muzzle ends during a single shot fire and harmonic behaviour at corresponding range of exciting frequencies.The solid models of both the barrels having same weight,were created using Solidworks.The continuous input data functions were generated by MATLAB using the field tested discreet data points.The generated velocity-distance functions were converted into time dependent functions using integration algorithms to calculate transient parameters such as time steps,excitation frequency range,angle of rotation of projectile and its angular velocity.The dynamic condition simulated the varying nature of forces due to eccentricity in projectile and this data was fed to a time step study using ANSYS transient structural work bench followed by modal and harmonic analysis.The results showed a significant reduction in muzzle end deformation which thus proved that the T-finned barrel,although had same weight as that of the conventional one,but had better structural and harmonic characteristics,and hence it would inherit better firing accuracy.