The optoelectronic performance of CsPbBr_3 nanocrystal(NC) has been dramatically limited by the severe charge carrier recombination and its narrow light absorption range,which are anticipated to be resolved via coupli...The optoelectronic performance of CsPbBr_3 nanocrystal(NC) has been dramatically limited by the severe charge carrier recombination and its narrow light absorption range,which are anticipated to be resolved via coupling with plasmonic Au nanoparticle(NP).In view of this,CsPbBr_3-Au nanocomposite is fabricated and further employed as a concept model to study the electronic interaction between perovskite NC and Au NP for the first time.It has been found that the excitation-wavelength dependent carrier transfer behavior exists in CsPbBr_3-Au nanocomposite.Upon illumination with visible light(λ>420 nm),photo-generated electrons in CsPbBr_3 can inject into Au with an electron injection rate and efficiency of 2.84×10~9 s^(-1) and 78%,respectively.The boosted charge separation is further translated into a 3.2-fold enhancement in CO_2 photocatalytic reduction activity compared with pristine CsPbBr_3.On the other hand,when solely exciting Au NP with longer wavelength light(λ>580 nm),the localized surface plasmon resonance(LSPR) induced hot electrons in Au NPs can transfer to CsPbBr_3 NC and further participate in photocatalytic reaction towards CO_2 reduction.The present study provides new insights into preparing plasmonic nanostructure to enhance the performance of perovskite based optoelectronic devices.展开更多
Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conver...Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conversion application. Layered-stacking TiO2 film such as double-layer, tri-layer, quadrupleor quintuplicate-layer, is highly desirable to the design of high-performance semiconductor material photoanodes and the development of advanced photovoltaic devices. In this minireview, we will summarize the recent progress and achievements on proof-of-concept of layered-stacking TiO2 films(LTFs) for solar cells with emphasis on the tailored properties and synergistic functionalization of LTFs, such as optimized sensitizer adsorption, broadened light confinement as well as facilitated electron transport characteristics.Various demonstrations of LTFs photovoltaic systems provide lots of possibilities and flexibilities for more efficient solar energy utilization that a wide variety of TiO2 with distinguished morphologies can be integrated into differently structured photoanodes with synergistic and complementary advantages. This key structure engineering technology will also pave the way for the development of next generation state-ofthe-art electronics and optoelectronics. Finally, from our point of view, we conclude the future research interest and efforts for constructing more efficient LTFs as photoelectrode, which will be highly warranted to advance the solar energy conversion process.展开更多
基金financial supports from the National Natural Science Foundation of China (21875288, 21802172)the GDUPS (2016)the NSF of Guangdong Province (2018A030313009)。
文摘The optoelectronic performance of CsPbBr_3 nanocrystal(NC) has been dramatically limited by the severe charge carrier recombination and its narrow light absorption range,which are anticipated to be resolved via coupling with plasmonic Au nanoparticle(NP).In view of this,CsPbBr_3-Au nanocomposite is fabricated and further employed as a concept model to study the electronic interaction between perovskite NC and Au NP for the first time.It has been found that the excitation-wavelength dependent carrier transfer behavior exists in CsPbBr_3-Au nanocomposite.Upon illumination with visible light(λ>420 nm),photo-generated electrons in CsPbBr_3 can inject into Au with an electron injection rate and efficiency of 2.84×10~9 s^(-1) and 78%,respectively.The boosted charge separation is further translated into a 3.2-fold enhancement in CO_2 photocatalytic reduction activity compared with pristine CsPbBr_3.On the other hand,when solely exciting Au NP with longer wavelength light(λ>580 nm),the localized surface plasmon resonance(LSPR) induced hot electrons in Au NPs can transfer to CsPbBr_3 NC and further participate in photocatalytic reaction towards CO_2 reduction.The present study provides new insights into preparing plasmonic nanostructure to enhance the performance of perovskite based optoelectronic devices.
基金the financial supports from the NSFC(51472274)the GDUPS(2016)+2 种基金the program of Guangzhou Science and Technology Project(201504010031)the NSF of Guangdong Province(S2013030013474)the Fundamental Research Funds for the Central Universities
文摘Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conversion application. Layered-stacking TiO2 film such as double-layer, tri-layer, quadrupleor quintuplicate-layer, is highly desirable to the design of high-performance semiconductor material photoanodes and the development of advanced photovoltaic devices. In this minireview, we will summarize the recent progress and achievements on proof-of-concept of layered-stacking TiO2 films(LTFs) for solar cells with emphasis on the tailored properties and synergistic functionalization of LTFs, such as optimized sensitizer adsorption, broadened light confinement as well as facilitated electron transport characteristics.Various demonstrations of LTFs photovoltaic systems provide lots of possibilities and flexibilities for more efficient solar energy utilization that a wide variety of TiO2 with distinguished morphologies can be integrated into differently structured photoanodes with synergistic and complementary advantages. This key structure engineering technology will also pave the way for the development of next generation state-ofthe-art electronics and optoelectronics. Finally, from our point of view, we conclude the future research interest and efforts for constructing more efficient LTFs as photoelectrode, which will be highly warranted to advance the solar energy conversion process.