Numerical studies on transient heat transfer characteristics of air-array-jet impingement with a small jet-to-plate distance and a large temperature difference between nozzles and plate were presented.The dimensionles...Numerical studies on transient heat transfer characteristics of air-array-jet impingement with a small jet-to-plate distance and a large temperature difference between nozzles and plate were presented.The dimensionless jet-to-plate distance(H/D)was 0.2,and non-dimensional nozzle-to-nozzle spacing(S/D)was 3,4,5 and 6,respectively.It is found that the quenching time is shortened at a constant total mass flow at air jet inlet m·(m·=218.21 kg/h),and the heat transfer uniformity is deterio-rated as S/D increases.However,the adding reversed-flow nozzles can shorten the quenching time of the glass plate considerably with a modest change in the heat transfer uniformity.The results at variable m·are the same as those at a fixed m·.Furthermore,the parity and arrangement of nozzles are also discussed,It is found that an odd number of nozzles is more beneficial for transient heat transfer.Based on these results,an appropriate proposal for ultra-thin glass tempering process is presented.展开更多
To further extend knowledge about the detailed knowledge on the crossflow characteristics in a multi-jets system under a confined space,particle image velocimetry (PIV) was employed to investigate the flow structures ...To further extend knowledge about the detailed knowledge on the crossflow characteristics in a multi-jets system under a confined space,particle image velocimetry (PIV) was employed to investigate the flow structures together with the distributions of the mean velocity components for Reynolds numbers (Re) ranging from 6 213 to 13 418,nozzle-to-plate spacing (H/D) varying from 0. 20 to1. 25,respectively. Results show that the crossflow configuration is significantly different from those of large nozzle-to-plate spacing. In addition,a turning point H/D=0.50 is revealed in the profile of the normalized maximum radial velocity which is associated with the heat transfer distribution on the impingement plate.展开更多
基金Natural Science Foundation of China(51335002,51905049)。
文摘Numerical studies on transient heat transfer characteristics of air-array-jet impingement with a small jet-to-plate distance and a large temperature difference between nozzles and plate were presented.The dimensionless jet-to-plate distance(H/D)was 0.2,and non-dimensional nozzle-to-nozzle spacing(S/D)was 3,4,5 and 6,respectively.It is found that the quenching time is shortened at a constant total mass flow at air jet inlet m·(m·=218.21 kg/h),and the heat transfer uniformity is deterio-rated as S/D increases.However,the adding reversed-flow nozzles can shorten the quenching time of the glass plate considerably with a modest change in the heat transfer uniformity.The results at variable m·are the same as those at a fixed m·.Furthermore,the parity and arrangement of nozzles are also discussed,It is found that an odd number of nozzles is more beneficial for transient heat transfer.Based on these results,an appropriate proposal for ultra-thin glass tempering process is presented.
基金National Natural Science Foundation of China(51335002)
文摘To further extend knowledge about the detailed knowledge on the crossflow characteristics in a multi-jets system under a confined space,particle image velocimetry (PIV) was employed to investigate the flow structures together with the distributions of the mean velocity components for Reynolds numbers (Re) ranging from 6 213 to 13 418,nozzle-to-plate spacing (H/D) varying from 0. 20 to1. 25,respectively. Results show that the crossflow configuration is significantly different from those of large nozzle-to-plate spacing. In addition,a turning point H/D=0.50 is revealed in the profile of the normalized maximum radial velocity which is associated with the heat transfer distribution on the impingement plate.