期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
万向轴动不平衡检测的自适应变分模态分解方法
1
作者 唐泽娴 林建辉 +1 位作者 丁建明 李艳萍 《机械设计与制造》 北大核心 2022年第2期132-134,共3页
万向轴动不平衡主要体现在万向轴振动信号的转频及其倍频上,为了更准确地提取动不平衡振动特征,引入具有完备理论基础、窄带滤波特性和最优解的信号分解方法——变分模态分解法来提取动不平衡振动特征。然而,变分模态分解的结果对两个参... 万向轴动不平衡主要体现在万向轴振动信号的转频及其倍频上,为了更准确地提取动不平衡振动特征,引入具有完备理论基础、窄带滤波特性和最优解的信号分解方法——变分模态分解法来提取动不平衡振动特征。然而,变分模态分解的结果对两个参数(模态数量、惩罚因子)的设置很敏感。因此,提出应用傅里叶谱的均方根分布与其局部峭度值确定变分模态分解的模态数量,利用傅里叶谱峭度增量对惩罚因子进行最优选择。建立万向轴动不平衡的自适应提取模型,应用试验台实测数据对该检测方法和模型的有效性进行了验证。 展开更多
关键词 信号处理 万向轴 变分模态分解 傅里叶谱峭度 均方根 动不平衡检测
在线阅读 下载PDF
Impulsive component extraction using shift-invariant dictionary learning and its application to gear-box bearing early fault diagnosis 被引量:4
2
作者 ZHANG Zhao-heng ding jian-ming +1 位作者 WU Chao LIN Jian-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期824-838,共15页
The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract ... The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing. 展开更多
关键词 gear-box bearing fault diagnosis shift-invariant K-means singular value decomposition impulsive component extraction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部