Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the...Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the impact of nitric acid oxidation on the surface of carbonized melamine foam and its microwave absorption properties.The treated foam exhibits optimal reflection loss of−21.51 dB at 13.20 GHz,with an effective absorption bandwidth of 7.04 GHz.The enhanced absorption properties are primarily attributed to the strengthened dielectric loss,improved impedance matching,and increased polarization losses resulting from the oxidized surfaces.This research demonstrates a promising new approach for research into surface treatments to improve the performances of microwave absorbers.展开更多
Left-hand materials have drawn increasing attention from many disciplines and found widespread application, especially in microwave engineering. A sandwiched metamaterial consisting of multi-nested square-split-ring r...Left-hand materials have drawn increasing attention from many disciplines and found widespread application, especially in microwave engineering. A sandwiched metamaterial consisting of multi-nested square-split-ring resonators on the top side and a set of wires on the back side is proposed. Scattering parameters are retrieved by high-frequency structure simulator(HFSS) software based on the finite element method. Effects of square-split-ring number on the left-hand characteristics containing negative values of permittivity, permeability, and refractive index have been intensively investigated. Simulated results show that obvious resonant left-hand characteristics could be observed within 8-18 GHz, and the resonant frequency counts are inclined to be in direct proportion to the square-split-ring number over 8-18 GHz. Besides, the proposed sandwiched metamaterial with three square-split-ring resonators and three wires presents the widest frequency band of left-hand characteristics in a range of 8-18 GHz. Further, electromagnetic field distributions demonstrated that the induced magnetic dipole dominates the resonant absorption. The multi-peak resonance characteristics of square-split-ring resonant structure are considered to be a promising candidate for selective-frequency absorption or modulation toward microwave frequency band.展开更多
基金Project(2023RC3066)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023JJ50079)supported by the Hunan Provincial Natural Science Foundation,China。
文摘Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the impact of nitric acid oxidation on the surface of carbonized melamine foam and its microwave absorption properties.The treated foam exhibits optimal reflection loss of−21.51 dB at 13.20 GHz,with an effective absorption bandwidth of 7.04 GHz.The enhanced absorption properties are primarily attributed to the strengthened dielectric loss,improved impedance matching,and increased polarization losses resulting from the oxidized surfaces.This research demonstrates a promising new approach for research into surface treatments to improve the performances of microwave absorbers.
基金Project(2017YFA0204600)supported by the National Key Research and Development Program of ChinaProject(51802352)supported by the National Natural Science Foundation of ChinaProject(2019JJ50768)supported by the Natural Science Foundation of Hunan Province of China。
文摘Left-hand materials have drawn increasing attention from many disciplines and found widespread application, especially in microwave engineering. A sandwiched metamaterial consisting of multi-nested square-split-ring resonators on the top side and a set of wires on the back side is proposed. Scattering parameters are retrieved by high-frequency structure simulator(HFSS) software based on the finite element method. Effects of square-split-ring number on the left-hand characteristics containing negative values of permittivity, permeability, and refractive index have been intensively investigated. Simulated results show that obvious resonant left-hand characteristics could be observed within 8-18 GHz, and the resonant frequency counts are inclined to be in direct proportion to the square-split-ring number over 8-18 GHz. Besides, the proposed sandwiched metamaterial with three square-split-ring resonators and three wires presents the widest frequency band of left-hand characteristics in a range of 8-18 GHz. Further, electromagnetic field distributions demonstrated that the induced magnetic dipole dominates the resonant absorption. The multi-peak resonance characteristics of square-split-ring resonant structure are considered to be a promising candidate for selective-frequency absorption or modulation toward microwave frequency band.