Achieving highly-efficient and stable perovskite solar cells(PSCs) with a simplified structure remains challenging, despite the tremendous potential for reducing preparation cost and facile processability by removing ...Achieving highly-efficient and stable perovskite solar cells(PSCs) with a simplified structure remains challenging, despite the tremendous potential for reducing preparation cost and facile processability by removing hole transport layer(HTL). In this work, eco-friendly glucose(Gl) as an interface modifier for HTL-free narrow bandgap tin-lead(Sn-Pb) PSCs is proposed. Gl not only enhances the wettability of the indium tin oxide to promote perovskite heterogeneous nucleation on substrate, but also realizes defect passivation by interacting with uncoordinated Pb^(2+) and Sn^(2+) in perovskite films. As a result, the quality of the perovskite films has been significantly improved, accompanied by reduced defects of bottom interface and optimized energy level structure of device, leading to an efficiency increase and a less nonradiative voltage loss of 0.102 V(for a bandgap of ~1.26 eV). Consequently, the optimized PSC delivers an unprecedented efficiency over 21% with high open-circuit voltage and enhanced stability, outperforming the control device. This work demonstrates a cost-effective approach to develop simplified structure high efficiency HTL-free Sn-Pb PSC.展开更多
An efficient environment-friendly synthesis of N-phenylpiperidine was developed from aniline and 1,5-pentanediol over γ-Al2O3 catalyst under atmospheric pressure. The conversion of 1,5-pentanediol reached 97% and the...An efficient environment-friendly synthesis of N-phenylpiperidine was developed from aniline and 1,5-pentanediol over γ-Al2O3 catalyst under atmospheric pressure. The conversion of 1,5-pentanediol reached 97% and the selectivity for N-phenylpiperidine attained 94%. The structure of the catalyst was characterized by NH3-TPD and BET. The influences of calcination temperature of the catalyst and reaction temperature on activity and selectivity of the catalyst were investigated.展开更多
Amide proton transfer (APT) magnetic resonance imaging (MRI) is an important molecularimaging technique at the protein level in tissue. Neurodegenerative diseases have a highlikelihood of causing abnormal protein accu...Amide proton transfer (APT) magnetic resonance imaging (MRI) is an important molecularimaging technique at the protein level in tissue. Neurodegenerative diseases have a highlikelihood of causing abnormal protein accumulation in the brain, which can be detectedby APT MRI. This article briefly introduces the principles and image processing technologyof APT MRI, and reviews the current state of research on Alzheimer's disease and Parkinson's disease using this technique. Early applications of this approach in these twoneurodegenerative diseases are encouraging, which also suggests continued technicaldevelopment and larger clinical trials to gauge the value of this technique.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 12074321)the Young Science and Technology Talents Development Project of Guizhou Provincial Education Department (Grant No. QJH-KY [2022]012)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. SWU020019)the Natural Science Foundation of Chongqing (Grant No. cstc2020jcyjmsxmx0648)the Chongqing Graduate Student Research Innovation Project (Grant No. CYB22119)。
文摘Achieving highly-efficient and stable perovskite solar cells(PSCs) with a simplified structure remains challenging, despite the tremendous potential for reducing preparation cost and facile processability by removing hole transport layer(HTL). In this work, eco-friendly glucose(Gl) as an interface modifier for HTL-free narrow bandgap tin-lead(Sn-Pb) PSCs is proposed. Gl not only enhances the wettability of the indium tin oxide to promote perovskite heterogeneous nucleation on substrate, but also realizes defect passivation by interacting with uncoordinated Pb^(2+) and Sn^(2+) in perovskite films. As a result, the quality of the perovskite films has been significantly improved, accompanied by reduced defects of bottom interface and optimized energy level structure of device, leading to an efficiency increase and a less nonradiative voltage loss of 0.102 V(for a bandgap of ~1.26 eV). Consequently, the optimized PSC delivers an unprecedented efficiency over 21% with high open-circuit voltage and enhanced stability, outperforming the control device. This work demonstrates a cost-effective approach to develop simplified structure high efficiency HTL-free Sn-Pb PSC.
基金supported by the Natural Science Foundation of Liaoning Province(No.20072154)
文摘An efficient environment-friendly synthesis of N-phenylpiperidine was developed from aniline and 1,5-pentanediol over γ-Al2O3 catalyst under atmospheric pressure. The conversion of 1,5-pentanediol reached 97% and the selectivity for N-phenylpiperidine attained 94%. The structure of the catalyst was characterized by NH3-TPD and BET. The influences of calcination temperature of the catalyst and reaction temperature on activity and selectivity of the catalyst were investigated.
文摘Amide proton transfer (APT) magnetic resonance imaging (MRI) is an important molecularimaging technique at the protein level in tissue. Neurodegenerative diseases have a highlikelihood of causing abnormal protein accumulation in the brain, which can be detectedby APT MRI. This article briefly introduces the principles and image processing technologyof APT MRI, and reviews the current state of research on Alzheimer's disease and Parkinson's disease using this technique. Early applications of this approach in these twoneurodegenerative diseases are encouraging, which also suggests continued technicaldevelopment and larger clinical trials to gauge the value of this technique.