期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Study of the asymmetry of hot-spot self-emission imaging of inertial confinement fusion implosion driven by high-power laser facilities 被引量:1
1
作者 Yunsong DONG Dongguo KANG +19 位作者 Wei JIANG Zhicheng LIU Zhongjing CHEN Xing ZHANG Xin LI Chuankui SUN chuansheng yin Jianjun DONG Zhiwen YANG Yudong PU Ji YAN Bo YU Tianxuan HUANG Wenyong MIAO Zhensheng DAI Fengjun GE Dong YANG Feng WANG Jiamin YANG Shaoen JIANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第8期20-26,共7页
Implosion asymmetry is a crucial problem quenching ignition in the field of inertial confinement fusion.A forward-calculation method based on 1D and 2D hydrodynamic simulations has been developed to generate and study... Implosion asymmetry is a crucial problem quenching ignition in the field of inertial confinement fusion.A forward-calculation method based on 1D and 2D hydrodynamic simulations has been developed to generate and study the x-ray images of hot-spot self-emission,indicating asymmetry integrated over the entire drive pulse.It is shown that the x-ray imaging photon energy should be higher to avoid the influence of the remaining shell.The contour level(percentage of the maximum emission intensity)and spatial resolution should be as low as possible,optimally less than 20%and 3μm,for characterization of higher-mode signatures such as Ps-P12 by x-ray self-emission images.On the contrary,signatures of lower-mode such as P2 remain clear at all contour levels and spatial resolutions.These key results can help determine the optimal diagnostics,laser,and target parameters for implosion experiments.Recent typical hot-spot asymmetry measurements and applications on the Shenguang 100 kJ class laser facility are also reported. 展开更多
关键词 INERTIAL CONFINEMENT FUSION IMPLOSION x-ray self-emission HOT-SPOT asymmetry
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部