期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of creep characteristics of natural gas hydrate-bearing sediments on wellbore stability 被引量:4
1
作者 yang Li Yuan-Fang Cheng +2 位作者 chuan-liang yan Zhi-Yuan Wang Li-Fang Song 《Petroleum Science》 SCIE CAS CSCD 2022年第1期220-233,共14页
Natural gas hydrate(NGH)reservoirs consist of the types of sediments with weak cementation,low strength,high plasticity,and high creep.Based on the kinetics and thermodynamic characteristics of NGH decomposition,herei... Natural gas hydrate(NGH)reservoirs consist of the types of sediments with weak cementation,low strength,high plasticity,and high creep.Based on the kinetics and thermodynamic characteristics of NGH decomposition,herein a heat-fluid-solid coupling model was established for studying the wellbore stability in an NGH-bearing formation to analyze the effects of the creep characteristics of NGH-bearing sediments during long-term drilling.The results demonstrated that the creep characteristics of sediments resulted in larger plastic yield range,thus aggravating the plastic strain accumulation around the wellbore.Furthermore,the creep characteristics of NGH-bearing sediments could enhance the effects induced by the difference in horizontal in situ stress,as a result,the plastic strain in the formation around the wellbore increased nonlinearly with increasing difference in in situ stress.The lower the pore pressure,the greater the stress concentration effects and the higher the plastic strain at the wellbore.Moreover,the lower the initial NGH saturation,the greater the initial plastic strain and yield range and the higher the equivalent creep stress.The plastic strain at the wellbore increased nonlinearly with decreasing initial saturation. 展开更多
关键词 Natural gas hydrates Wellbore stability CREEP Plastic yield
在线阅读 下载PDF
Time-dependent borehole stability in hard-brittle shale 被引量:1
2
作者 chuan-liang yan Lei-Feng Dong +5 位作者 Kai Zhao Yuan-Fang Cheng Xiao-Rong Li Jin-Gen Deng Zhen-Qi Li Yong Chen 《Petroleum Science》 SCIE CAS CSCD 2022年第2期663-677,共15页
Rock damage appears in brittle shale even prior to peak stress(i.e.,before failure)due to the occurrence of microcracks in these rocks.In this work,a coupled hydromechanical model was built by incorporating the mechan... Rock damage appears in brittle shale even prior to peak stress(i.e.,before failure)due to the occurrence of microcracks in these rocks.In this work,a coupled hydromechanical model was built by incorporating the mechanical and fluid seepage induced stresses around a wellbore during drilling.The borehole instability mechanism of hard-brittle shale was studied.The results show that even if a well is simply drilled into a hard-brittle shale formation,the formation around the borehole can be subjected to rock damage.The maximum failure ratio of the formation around the borehole increases with drilling time.A lower drilling fluid density corresponds to a faster increase in the failure ratio of the borehole with time and a shorter period of borehole collapse.When the initial drilling fluid density is too low,serious rock damage occurs in the formation around the borehole.Even though a high-density drilling fluid is used after drilling,long-term borehole stability is difficult to maintain.While drilling in hard-brittle shale,drilling fluid with a proper density should be used rather than increasing the density of the drilling fluid only after borehole collapse occurs,which is more favorable for maintaining long-term borehole stability. 展开更多
关键词 SHALE Rock damage Drilling fluid density Borehole stability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部