Natural gas hydrate(NGH)reservoirs consist of the types of sediments with weak cementation,low strength,high plasticity,and high creep.Based on the kinetics and thermodynamic characteristics of NGH decomposition,herei...Natural gas hydrate(NGH)reservoirs consist of the types of sediments with weak cementation,low strength,high plasticity,and high creep.Based on the kinetics and thermodynamic characteristics of NGH decomposition,herein a heat-fluid-solid coupling model was established for studying the wellbore stability in an NGH-bearing formation to analyze the effects of the creep characteristics of NGH-bearing sediments during long-term drilling.The results demonstrated that the creep characteristics of sediments resulted in larger plastic yield range,thus aggravating the plastic strain accumulation around the wellbore.Furthermore,the creep characteristics of NGH-bearing sediments could enhance the effects induced by the difference in horizontal in situ stress,as a result,the plastic strain in the formation around the wellbore increased nonlinearly with increasing difference in in situ stress.The lower the pore pressure,the greater the stress concentration effects and the higher the plastic strain at the wellbore.Moreover,the lower the initial NGH saturation,the greater the initial plastic strain and yield range and the higher the equivalent creep stress.The plastic strain at the wellbore increased nonlinearly with decreasing initial saturation.展开更多
Rock damage appears in brittle shale even prior to peak stress(i.e.,before failure)due to the occurrence of microcracks in these rocks.In this work,a coupled hydromechanical model was built by incorporating the mechan...Rock damage appears in brittle shale even prior to peak stress(i.e.,before failure)due to the occurrence of microcracks in these rocks.In this work,a coupled hydromechanical model was built by incorporating the mechanical and fluid seepage induced stresses around a wellbore during drilling.The borehole instability mechanism of hard-brittle shale was studied.The results show that even if a well is simply drilled into a hard-brittle shale formation,the formation around the borehole can be subjected to rock damage.The maximum failure ratio of the formation around the borehole increases with drilling time.A lower drilling fluid density corresponds to a faster increase in the failure ratio of the borehole with time and a shorter period of borehole collapse.When the initial drilling fluid density is too low,serious rock damage occurs in the formation around the borehole.Even though a high-density drilling fluid is used after drilling,long-term borehole stability is difficult to maintain.While drilling in hard-brittle shale,drilling fluid with a proper density should be used rather than increasing the density of the drilling fluid only after borehole collapse occurs,which is more favorable for maintaining long-term borehole stability.展开更多
基金financially supported by the National Natural Science Foundation of China(51974353,51991362)Natural Science Foundation of Shandong Province(ZR2019ZD14)CNPC’s Major Science and Technology Projects(ZD2019-184-003)。
文摘Natural gas hydrate(NGH)reservoirs consist of the types of sediments with weak cementation,low strength,high plasticity,and high creep.Based on the kinetics and thermodynamic characteristics of NGH decomposition,herein a heat-fluid-solid coupling model was established for studying the wellbore stability in an NGH-bearing formation to analyze the effects of the creep characteristics of NGH-bearing sediments during long-term drilling.The results demonstrated that the creep characteristics of sediments resulted in larger plastic yield range,thus aggravating the plastic strain accumulation around the wellbore.Furthermore,the creep characteristics of NGH-bearing sediments could enhance the effects induced by the difference in horizontal in situ stress,as a result,the plastic strain in the formation around the wellbore increased nonlinearly with increasing difference in in situ stress.The lower the pore pressure,the greater the stress concentration effects and the higher the plastic strain at the wellbore.Moreover,the lower the initial NGH saturation,the greater the initial plastic strain and yield range and the higher the equivalent creep stress.The plastic strain at the wellbore increased nonlinearly with decreasing initial saturation.
基金financially supported by the National Natural Scienceof China(52074224,U1762216)the Key Research and Development Program of Shandong Province(2019GGX103025)
文摘Rock damage appears in brittle shale even prior to peak stress(i.e.,before failure)due to the occurrence of microcracks in these rocks.In this work,a coupled hydromechanical model was built by incorporating the mechanical and fluid seepage induced stresses around a wellbore during drilling.The borehole instability mechanism of hard-brittle shale was studied.The results show that even if a well is simply drilled into a hard-brittle shale formation,the formation around the borehole can be subjected to rock damage.The maximum failure ratio of the formation around the borehole increases with drilling time.A lower drilling fluid density corresponds to a faster increase in the failure ratio of the borehole with time and a shorter period of borehole collapse.When the initial drilling fluid density is too low,serious rock damage occurs in the formation around the borehole.Even though a high-density drilling fluid is used after drilling,long-term borehole stability is difficult to maintain.While drilling in hard-brittle shale,drilling fluid with a proper density should be used rather than increasing the density of the drilling fluid only after borehole collapse occurs,which is more favorable for maintaining long-term borehole stability.