期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electronic structure and spatial inhomogeneity of iron-based superconductor FeS 被引量:1
1
作者 chengwei wang Meixiao wang +12 位作者 Juan Jiang Haifeng Yang Lexian Yang Wujun Shi Xiaofang Lai Sung-Kwan Mo Alexei Barinov Binghai Yan Zhi Liu Fuqiang Huang Jinfeng Jia Zhongkai Liu Yulin Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期110-115,共6页
Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,... Iron-based superconductor family FeX(X=S,Se,Te)has been one of the research foci in physics and material science due to their record-breaking superconducting temperature(FeSe film)and rich physical phenomena.Recently,FeS,the least studied Fe X compound(due to the difficulty in synthesizing high quality macroscopic crystals)attracted much attention because of its puzzling superconducting pairing symmetry.In this work,combining scanning tunneling microscopy and angle resolved photoemission spectroscopy(ARPES)with sub-micron spatial resolution,we investigate the intrinsic electronic structures of superconducting FeS from individual single crystalline domains.Unlike FeTe or FeSe,FeS remains identical tetragonal structure from room temperature down to 5 K,and the band structures observed can be well reproduced by our ab-initio calculations.Remarkably,mixed with the 1×1 tetragonal metallic phase,we also observe the coexistence of √5×√5 reconstructed insulating phase in the crystal,which not only helps explain the unusual properties of FeS,but also demonstrates the importance of using spatially resolved experimental tools in the study of this compound. 展开更多
关键词 angle-resolved PHOTOEMISSION with spatially resolution scanning TUNNELING microscopy IRON-BASED SUPERCONDUCTOR electronic band structure
在线阅读 下载PDF
LiCoO_(2) sintering aid towards cathode-interface-enhanced garnet electrolytes
2
作者 Xiaoye Liu Xiangkun Kong +6 位作者 Wenyi Xiang Yining Jiang Bingqinq Xiong Weiwei Ping Changrong Xia Daoming Huan chengwei wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期181-188,共8页
Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of ca... Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of cathodeILLZO.However,its application is still hindered by the interlayer co-diffusion with the cathode and high sintering temperature(>1200℃).In this work,a new garnet-type composite solid-state electrolyte(SSE) Li_(6.54)La_(2.96)Ba_(0.04)Zr_(1.5)Nb_(0.5)O_(12)-LiCoO_(2)(LLBZNO-LCO) is firstly proposed to improve the chemical stability and electrochemical properties of garnet with high-temperature processing.Small doses of LCO(3%) can significantly decrease the LCOISSE interface resistance from 121.2 to 10.1 Ω cm~2,while the sintering temperature of garnet-type LLBZNO decreases from 1230 to 1000℃.The all-solid-state battery based on the sintered LLBZNO-LCO SSE exhibits excellent cycling stability.Our approach achieves an enhanced LCOISSE interface and an improved sintering activity of garnet SSE,which provides a new strategy for optimizing the comprehensive performance of garnet SSE. 展开更多
关键词 Solid-state battery Garnet electrolyte LiCoO_(2)sintering aid DOPING Cathode interface
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部