We used callus of Populus euphratica Olive to isolate protoplasts, and IT fluxes across plasma membrane were investigated. The concentration of enzymes for protoplast isolation, e.g. cellulase, pectolyase, macerozyme,...We used callus of Populus euphratica Olive to isolate protoplasts, and IT fluxes across plasma membrane were investigated. The concentration of enzymes for protoplast isolation, e.g. cellulase, pectolyase, macerozyme, hemicellulase, and sorbitol content, incubation time were systemically studied. High yield and viability of protoplast was achieved after 6-8 hours incubation of P. euphratica callus in enzyme solution containing 1.5% (w:v) cellulase R-10, 0.1% (w:v) pectolyase Y-23, 0.2% (w:v) macerozyme R-10, 0.05% (w:v) hemicellulase and 0.75M).80 mol·L^-1 sorbitol. Non-invasively ion selective microelectrode technique was used to access proton fluxes in the absence and presence of NaCl (20 mmol.L-1). Salt-induced transient net IT effiux was observed in the plasma membrane ofP. euphratica cells. The shift of IT flux response to NaC1 shock and the relevance to salt tolerance were discussed.展开更多
The effect of NaCl on growth, biomass and ion relations of two salt-tolerant isolates of Paxillus involutus, MAJ and NAU were investigated. The two Paxillus strains were exposed to the following concentrations of NaCl...The effect of NaCl on growth, biomass and ion relations of two salt-tolerant isolates of Paxillus involutus, MAJ and NAU were investigated. The two Paxillus strains were exposed to the following concentrations of NaCl: 0, 100, 200 and 500 mmol·L^-1. Growth of MAJ and NAU was enhanced by 100 mmol·L^-1 NaCl but severely inhibited at the concentration of 500 mmol·L^-1. NAU exhibited a greater capacity to exclude Na^+ and Cl^- under all salinity levels, whereas the salt-includer MAJ had a higher capacity in nutrient uptake under salt stress. The ratios Na^+/K^+, Na^+/Ca^2+ and Na^+/Mg^2+ in NaCl-treated MAJ and NAU did not increase at levels of 100 and 200 mmol·L^-1 NaCl but markedly increased at 500 mmol·L^-1. This suggests that the two strains, especially MAJ, enhanced nutrient uptake corresponding to the increased Na^+ influx at moderate salinity. We conclude that both MAJ and NAU are able to tolerate 500 mmol·L^-1 NaCl but there are species-specific differences in retaining ionic homeostasis in the two Paxillus strains. NAU is a salt-excluder, MAJ is a salt-includer but retains a high capacity in nutrient selectivity under saline conditions. Their definite mechanisms to enhance salt tolerance of mycorrhizal hosts need further study.展开更多
For this paper, the plasma membrane (PM) H^+-ATPase gene has been cloned from Populus euphratica Oliv. through a ho- mology based strategy. The isolated 3,210 bp cDNA contains a single 2,862 bp open reading frame ...For this paper, the plasma membrane (PM) H^+-ATPase gene has been cloned from Populus euphratica Oliv. through a ho- mology based strategy. The isolated 3,210 bp cDNA contains a single 2,862 bp open reading frame (ORF) which encodes a putative H^+-ATPase protein of 953 amino acid residues, with a significant homology to plasma membrane H^+-ATPase of Prunus persica, Phaseolus vulgaris, Sesbania rostrata and Daucus carota. The predicted protein has a molecular weight of 104,553 Da. The copy number analysis revealed multiple copies of the PM H^+-ATPase in the P. euphratica genome after digestion of their genomic DNA by the restriction enzymes EcoRI, NdeI, FbaI and Bg/Ⅱ, and Southern blot.展开更多
基金the key project of National Natural Science Foundation of China (30430430) the HI-TECH Research and Development Program of China (863 Program, 2006AA10Z131)+1 种基金 a Foundation for the Author of National Excellent Doctoral Dissertation of PR China (200152) the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institution of MOE, PRC (2002-323).
文摘We used callus of Populus euphratica Olive to isolate protoplasts, and IT fluxes across plasma membrane were investigated. The concentration of enzymes for protoplast isolation, e.g. cellulase, pectolyase, macerozyme, hemicellulase, and sorbitol content, incubation time were systemically studied. High yield and viability of protoplast was achieved after 6-8 hours incubation of P. euphratica callus in enzyme solution containing 1.5% (w:v) cellulase R-10, 0.1% (w:v) pectolyase Y-23, 0.2% (w:v) macerozyme R-10, 0.05% (w:v) hemicellulase and 0.75M).80 mol·L^-1 sorbitol. Non-invasively ion selective microelectrode technique was used to access proton fluxes in the absence and presence of NaCl (20 mmol.L-1). Salt-induced transient net IT effiux was observed in the plasma membrane ofP. euphratica cells. The shift of IT flux response to NaC1 shock and the relevance to salt tolerance were discussed.
基金supported jointly by the Alexander von Humboldt-Stiftung/Foundation(Germany),German Science Foundation through Poplar Research Group Germany(PRG),the key project of National Natural Science Foundation of China(Grant No.30430430)the Hi-Tech Research and Development Program of China("863"Program,2006AA 10Z 131)+1 种基金a Foundation for the Author of National Excellent Doctoral Dissertation of P.R.China(200152)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institu-tion of MOE,PRC(2002-323).
文摘The effect of NaCl on growth, biomass and ion relations of two salt-tolerant isolates of Paxillus involutus, MAJ and NAU were investigated. The two Paxillus strains were exposed to the following concentrations of NaCl: 0, 100, 200 and 500 mmol·L^-1. Growth of MAJ and NAU was enhanced by 100 mmol·L^-1 NaCl but severely inhibited at the concentration of 500 mmol·L^-1. NAU exhibited a greater capacity to exclude Na^+ and Cl^- under all salinity levels, whereas the salt-includer MAJ had a higher capacity in nutrient uptake under salt stress. The ratios Na^+/K^+, Na^+/Ca^2+ and Na^+/Mg^2+ in NaCl-treated MAJ and NAU did not increase at levels of 100 and 200 mmol·L^-1 NaCl but markedly increased at 500 mmol·L^-1. This suggests that the two strains, especially MAJ, enhanced nutrient uptake corresponding to the increased Na^+ influx at moderate salinity. We conclude that both MAJ and NAU are able to tolerate 500 mmol·L^-1 NaCl but there are species-specific differences in retaining ionic homeostasis in the two Paxillus strains. NAU is a salt-excluder, MAJ is a salt-includer but retains a high capacity in nutrient selectivity under saline conditions. Their definite mechanisms to enhance salt tolerance of mycorrhizal hosts need further study.
文摘For this paper, the plasma membrane (PM) H^+-ATPase gene has been cloned from Populus euphratica Oliv. through a ho- mology based strategy. The isolated 3,210 bp cDNA contains a single 2,862 bp open reading frame (ORF) which encodes a putative H^+-ATPase protein of 953 amino acid residues, with a significant homology to plasma membrane H^+-ATPase of Prunus persica, Phaseolus vulgaris, Sesbania rostrata and Daucus carota. The predicted protein has a molecular weight of 104,553 Da. The copy number analysis revealed multiple copies of the PM H^+-ATPase in the P. euphratica genome after digestion of their genomic DNA by the restriction enzymes EcoRI, NdeI, FbaI and Bg/Ⅱ, and Southern blot.