The residues of Al^(3+),Ga^(3+),and In^(3+)in the environment pose an increasingly serious threat to human health and ecosystems.However,their specific and rapid detection remains challenging.In this study,we present ...The residues of Al^(3+),Ga^(3+),and In^(3+)in the environment pose an increasingly serious threat to human health and ecosystems.However,their specific and rapid detection remains challenging.In this study,we present a water‑stable cadmium metal‑organic framework(Cd‑MOF)based luminescence probe,which can detect Al^(3+),Ga^(3+),and In^(3+)ions in aqueous solutions via a luminescence“turn‑on”mode.The corresponding detection limits for the Al^(3+),Ga^(3+),and In^(3+)ions were 2.31,3.06,and 2.78μmol·L^(-1),respectively.This probe operated effectively within a pH range of 3‑10 in an all‑aqueous environment.Investigations into the detection mechanism revealed that this“turn‑on”recognition is attributed to the formation of new structures upon ion interaction.展开更多
文摘The residues of Al^(3+),Ga^(3+),and In^(3+)in the environment pose an increasingly serious threat to human health and ecosystems.However,their specific and rapid detection remains challenging.In this study,we present a water‑stable cadmium metal‑organic framework(Cd‑MOF)based luminescence probe,which can detect Al^(3+),Ga^(3+),and In^(3+)ions in aqueous solutions via a luminescence“turn‑on”mode.The corresponding detection limits for the Al^(3+),Ga^(3+),and In^(3+)ions were 2.31,3.06,and 2.78μmol·L^(-1),respectively.This probe operated effectively within a pH range of 3‑10 in an all‑aqueous environment.Investigations into the detection mechanism revealed that this“turn‑on”recognition is attributed to the formation of new structures upon ion interaction.