Selectivity control is a difficult scientific and industrial challenge in methanol-to-olefins(MTO)conversion.It has been experimentally established that the topology of zeolite catalysts influenced the distribution of...Selectivity control is a difficult scientific and industrial challenge in methanol-to-olefins(MTO)conversion.It has been experimentally established that the topology of zeolite catalysts influenced the distribution of products.Besides the topology effect on reaction kinetics,the topology influences the diffusion of reactants and products in catalysts as well.In this work,by using COMPASS force-field molecular dynamics method,we investigated the intracrystalline diffusion of ethene and propene in four different zeolites,CHA,MFI,BEA and FAU,at different temperatures.The self-diffusion coefficients and diffusion activation barriers were calculated.A strong restriction on the diffusion of propene in CHA was observed because the self-diffusion coefficient ratio of ethene to propene is larger than 18 and the diffusion activation barrier of propene is more than 20 kJ/mol in CHA.This ratio decreases with the increase of temperature in the four investigated zeolites.The shape selectivity on products from diffusion perspective can provide some implications on the understanding of the selectivity difference between HSAPO-34 and HZSM-5 catalysts for the MTO conversion.展开更多
Diamond crystals were synthesized with different doping proportions of N-H-O at 5.5 GPa-7.1 GPa and 1370℃-1450℃. With the increase in the N-H-O doping ratio, the crystal growth rate decreased, the temperature and pr...Diamond crystals were synthesized with different doping proportions of N-H-O at 5.5 GPa-7.1 GPa and 1370℃-1450℃. With the increase in the N-H-O doping ratio, the crystal growth rate decreased, the temperature and pressure conditions required for diamond nucleation became increasingly stringent, and the diamond crystallization process was affected. [111] became the dominant plane of diamonds;surface morphology became block-like;and growth texture,stacking faults, and etch pits increased. The diamond crystals had a two-dimensional growth habit. Increasing the doping concentration also increased the amount of N that entered the diamond crystals as confirmed via Fourier transform infrared spectroscopy. However, crystal quality gradually deteriorated as verified by the red-shifting of Raman peak positions and the widening of the Raman full width at half maximum. With the increase in the doping ratio, the photoluminescence property of the diamond crystals also drastically changed. The intensity of the N vacancy center of the diamond crystals changed, and several Ni-related defect centers, such as the NE1 and NE3 centers, appeared. Diamond synthesis in N-H-O-bearing fluid provides important information for deepening our understanding of the growth characteristics of diamonds in complex systems and the formation mechanism of natural diamonds, which are almost always N-rich and full of various defect centers. Meanwhile, this study proved that the type of defect centers in diamond crystals could be regulated by controlling the N-H-O impurity contents of the synthesis system.展开更多
Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work re...Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work reports the morphology,impurity content and crystal quality characteristics of silicon-doped diamond crystals synthesized under different pressures.Fourier transform infrared spectroscopy shows that with the increase of pressure,the nitrogen content in the C-center inside the diamond crystal decreases.X-ray photoelectron spectroscopy test results show the presence of silicon in the diamond crystals synthesized by adding silicon powder.Raman spectroscopy data shows that the increase in pressure in the Fe-Ni-C-Si system shifts the Raman peak of diamonds from 1331.18 cm^(-1)to 1331.25 cm^(-1),resulting in a decrease in internal stress in the crystal.The half-peak width decreased from 5.41 cm^(-1)to 5.26 cm^(-1),and the crystallinity of the silicon-doped diamond crystals improved,resulting in improved quality.This work provides valuable data that can provide a reference for the synthesis of high-quality silicon-doped diamonds.展开更多
基金supported by the National Basic Research Program of China (2009CB623504)the National Science Foundation of China (21103231)Shanghai Science Foundation (11ZR1449700)
文摘Selectivity control is a difficult scientific and industrial challenge in methanol-to-olefins(MTO)conversion.It has been experimentally established that the topology of zeolite catalysts influenced the distribution of products.Besides the topology effect on reaction kinetics,the topology influences the diffusion of reactants and products in catalysts as well.In this work,by using COMPASS force-field molecular dynamics method,we investigated the intracrystalline diffusion of ethene and propene in four different zeolites,CHA,MFI,BEA and FAU,at different temperatures.The self-diffusion coefficients and diffusion activation barriers were calculated.A strong restriction on the diffusion of propene in CHA was observed because the self-diffusion coefficient ratio of ethene to propene is larger than 18 and the diffusion activation barrier of propene is more than 20 kJ/mol in CHA.This ratio decreases with the increase of temperature in the four investigated zeolites.The shape selectivity on products from diffusion perspective can provide some implications on the understanding of the selectivity difference between HSAPO-34 and HZSM-5 catalysts for the MTO conversion.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51772120, 11604246, 51872112, and 11804305)the Project of Jilin Science and Technology Development Plan (Grant No. 20180201079GX)+1 种基金the Fundamental Research Funds for the Central Universities, the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxm X0391)the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201901405)。
文摘Diamond crystals were synthesized with different doping proportions of N-H-O at 5.5 GPa-7.1 GPa and 1370℃-1450℃. With the increase in the N-H-O doping ratio, the crystal growth rate decreased, the temperature and pressure conditions required for diamond nucleation became increasingly stringent, and the diamond crystallization process was affected. [111] became the dominant plane of diamonds;surface morphology became block-like;and growth texture,stacking faults, and etch pits increased. The diamond crystals had a two-dimensional growth habit. Increasing the doping concentration also increased the amount of N that entered the diamond crystals as confirmed via Fourier transform infrared spectroscopy. However, crystal quality gradually deteriorated as verified by the red-shifting of Raman peak positions and the widening of the Raman full width at half maximum. With the increase in the doping ratio, the photoluminescence property of the diamond crystals also drastically changed. The intensity of the N vacancy center of the diamond crystals changed, and several Ni-related defect centers, such as the NE1 and NE3 centers, appeared. Diamond synthesis in N-H-O-bearing fluid provides important information for deepening our understanding of the growth characteristics of diamonds in complex systems and the formation mechanism of natural diamonds, which are almost always N-rich and full of various defect centers. Meanwhile, this study proved that the type of defect centers in diamond crystals could be regulated by controlling the N-H-O impurity contents of the synthesis system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.51872112 and 51772120)。
文摘Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work reports the morphology,impurity content and crystal quality characteristics of silicon-doped diamond crystals synthesized under different pressures.Fourier transform infrared spectroscopy shows that with the increase of pressure,the nitrogen content in the C-center inside the diamond crystal decreases.X-ray photoelectron spectroscopy test results show the presence of silicon in the diamond crystals synthesized by adding silicon powder.Raman spectroscopy data shows that the increase in pressure in the Fe-Ni-C-Si system shifts the Raman peak of diamonds from 1331.18 cm^(-1)to 1331.25 cm^(-1),resulting in a decrease in internal stress in the crystal.The half-peak width decreased from 5.41 cm^(-1)to 5.26 cm^(-1),and the crystallinity of the silicon-doped diamond crystals improved,resulting in improved quality.This work provides valuable data that can provide a reference for the synthesis of high-quality silicon-doped diamonds.