A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material d...A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.展开更多
This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations amo...This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations among the activities which require some kinds of renewable resources. We predigest the process of sol-ving the resource availability cost problem (RACP) by using start time of each activity to code the schedule. Then, a novel heuris-tic algorithm is proposed to make the process of looking for the best solution efficiently. And then pseudo particle swarm optimiza-tion (PPSO) combined with PSO and path relinking procedure is presented to solve the RACP. Final y, comparative computational experiments are designed and the computational results show that the proposed method is very effective to solve RACP.展开更多
An opportunistic maintenance model is presented for a continuously deteriorating series system with economical de-pendence. The system consists of two kinds of units, which are respectively subjected to the deteriorat...An opportunistic maintenance model is presented for a continuously deteriorating series system with economical de-pendence. The system consists of two kinds of units, which are respectively subjected to the deterioration failure described by Gamma process and the random failure described by Poisson process. A two-level opportunistic policy defined by three decision parameters is proposed to coordinate the different maintenance actions and minimize the long-run maintenance cost rate of the system. A computable expression of the average cost rate is established by using the renewal property of the stochastic process of the maintained system state. The optimal values of three deci- sion parameters are derived by an iteration approach based on the characteristic of Gamma process. The behavior of the proposed policy is illustrated through a numerical experiment. Comparative study with the widely used corrective maintenance policy demonstrates the advantage of the proposed opportunistic maintenance method in significantly reducing the maintenance cost. Simultane- ously, the applicable area of this opportunistic model is discussed by the sensitivity analysis of the set-up cost and random failure rate.展开更多
An optimal replacement model for gamma deteriorating systems is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reli...An optimal replacement model for gamma deteriorating systems is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. A maintenance policy (N) is applied by which the system will be repaired whenever it experiences Nth preventive maintenance (PM), and an optimal policy (N*) could be determined numerically or analytically for minimizing the long-run average cost per unit time. Finally, a numerical example is presented to demonstrate the use of this policy.展开更多
Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and ...Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.展开更多
The goal of this research is to develop an emergency disaster relief mobilization tool that determines the mobilization levels of commodities, medical service and helicopters (which will be utilized as the primary me...The goal of this research is to develop an emergency disaster relief mobilization tool that determines the mobilization levels of commodities, medical service and helicopters (which will be utilized as the primary means of transport in a mountain region struck by a devastating earthquake) at pointed temporary facilities, including helicopter-based delivery plans for commodities and evacuation plans for critical population, in which relief demands are considered as uncertain. The proposed mobilization model is a two-stage stochastic mixed integer program with two objectives: maximizing the expected fill rate and minimizing the total expenditure of the mobilization campaign. Scenario decomposition based heuristic algorithms are also developed according to the structure of the proposed model. The computational results of a numerical example, which is constructed from the scenarios of the Great Wenchuan Earthquake, indicate that the model can provide valuable decision support for the mobilization of post-earthquake relief, and the proposed algorithms also have high efficiency in computation.展开更多
基金supported by the National Natural Science Foundation of China (60904002 70971132)
文摘A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example.
基金supported by the National Natural Science Foundation of China(7120116671201170)
文摘This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations among the activities which require some kinds of renewable resources. We predigest the process of sol-ving the resource availability cost problem (RACP) by using start time of each activity to code the schedule. Then, a novel heuris-tic algorithm is proposed to make the process of looking for the best solution efficiently. And then pseudo particle swarm optimiza-tion (PPSO) combined with PSO and path relinking procedure is presented to solve the RACP. Final y, comparative computational experiments are designed and the computational results show that the proposed method is very effective to solve RACP.
基金supported by the National Natural Science Foundation of China(6090400271201166)
文摘An opportunistic maintenance model is presented for a continuously deteriorating series system with economical de-pendence. The system consists of two kinds of units, which are respectively subjected to the deterioration failure described by Gamma process and the random failure described by Poisson process. A two-level opportunistic policy defined by three decision parameters is proposed to coordinate the different maintenance actions and minimize the long-run maintenance cost rate of the system. A computable expression of the average cost rate is established by using the renewal property of the stochastic process of the maintained system state. The optimal values of three deci- sion parameters are derived by an iteration approach based on the characteristic of Gamma process. The behavior of the proposed policy is illustrated through a numerical experiment. Comparative study with the widely used corrective maintenance policy demonstrates the advantage of the proposed opportunistic maintenance method in significantly reducing the maintenance cost. Simultane- ously, the applicable area of this opportunistic model is discussed by the sensitivity analysis of the set-up cost and random failure rate.
基金supported by the National Natural Science Foundation of China (60904002)
文摘An optimal replacement model for gamma deteriorating systems is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. A maintenance policy (N) is applied by which the system will be repaired whenever it experiences Nth preventive maintenance (PM), and an optimal policy (N*) could be determined numerically or analytically for minimizing the long-run average cost per unit time. Finally, a numerical example is presented to demonstrate the use of this policy.
基金supported by the National Natural Science Foundation of China (70971132)
文摘Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.
基金supported by the National Natural Science Foundation of China 71371181 91024006China Postdoctoral Science Foundation (2012M521918)
文摘The goal of this research is to develop an emergency disaster relief mobilization tool that determines the mobilization levels of commodities, medical service and helicopters (which will be utilized as the primary means of transport in a mountain region struck by a devastating earthquake) at pointed temporary facilities, including helicopter-based delivery plans for commodities and evacuation plans for critical population, in which relief demands are considered as uncertain. The proposed mobilization model is a two-stage stochastic mixed integer program with two objectives: maximizing the expected fill rate and minimizing the total expenditure of the mobilization campaign. Scenario decomposition based heuristic algorithms are also developed according to the structure of the proposed model. The computational results of a numerical example, which is constructed from the scenarios of the Great Wenchuan Earthquake, indicate that the model can provide valuable decision support for the mobilization of post-earthquake relief, and the proposed algorithms also have high efficiency in computation.