Achieving more meaningful N2 conversion by reducing the energy input and carbon footprint is now being investigated through a method of N2 fixation instead of the Haber-Bosch process.Unfortunately,the electrochemical ...Achieving more meaningful N2 conversion by reducing the energy input and carbon footprint is now being investigated through a method of N2 fixation instead of the Haber-Bosch process.Unfortunately,the electrochemical N2 reduction reaction(NRR)method as a rising approach currently still shows low selectivity(Faradaic efficiency<10%)and high-energy consumption[applied potential at least-0.2 V versus the reversible hydrogen electrode(RHE)].Here,the role of molybdenum aluminum boride single crystals,belonging to a family of ternary transition metal aluminum borides known as MAB phases,is reported for the electrochemical NRR for the first time,at a low applied potential(-0.05 V versus RHE)under ambient conditions and in alkaline media.Due to the unique nano-laminated crystal structure of the MAB phase,these inexpensive materials have been found to exhibit excellent electrocatalytic performances(NH3 yield:9.2μg h^-1cm^-2mgcat^-1.,Faradaic efficiency:30.1%)at the low overpotential,and to display a high chemical stability and sustained catalytic performance.In conjunction,further mechanism studies indicate B and Al as main-group metals show a highly selective affinity to N2 due to the strong interaction between the B 2p/Al 3p band and the N 2p orbitals,while Mo exhibits specific catalytic activity toward the subsequent reduction reaction.Overall,the MAB-phase catalyst under the synergy of the elements within ternary compound can suppress the hydrogen evolution reaction and achieve enhanced NRR performance.The significance of this work is to provide a promising candidate in the future synthesis of ammonia.展开更多
Ground subsidence is one of the key factors damaging transportation facilities, e.g., road networks consisting of highways and railways. In this paper, we propose to apply the persistent scatterer synthetic aperture r...Ground subsidence is one of the key factors damaging transportation facilities, e.g., road networks consisting of highways and railways. In this paper, we propose to apply the persistent scatterer synthetic aperture radar interferometry (PS-InSAR) approach that uses high- resolution TerraSAR-X (TSX) imagery to extract the regional scale subsidence rates (i.e., average annual sub- sidence in mm/year) along road networks. The primary procedures involve interferometric pair selection, interfer- ogram generation, persistent scatterer (PS) detection, PS networking, phase parameterization, and subsidence rate estimation. The Xiqing District in southwest Tianjin (China) is selected as the study area. This district contains one railway line and several highway lines. A total of 15 TSX images covering this area between April 2009 and June 2010 are utilized to obtain the subsidence rates by using the PS-InSAR (PSI) approach. The subsidence rates derived from PSI range from -68.7 to -1.3 mm/year. These findings show a significantly uneven subsidence pattern along the road network. Comparison between the PSI-derived subsidence rates and the leveling data obtained along the highways shows that the mean and standard deviation (SD) of the discrepancies between the two types of subsidence rates are 0.1 and 4-3.2 mm/year, respectively. The results indicate that the high-resolution TSX PSI is capable of providing comprehensive and detailed subsidence information regarding road networks with millimeter-level accuracy. Further inspections under geo- logical conditions and land-use categories in the study area indicate that the observed subsidence is highly related to aquifer compression due to groundwater pumping. Therefore, measures should be taken to mitigate groundwater extraction for the study area.展开更多
Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near M...Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is presented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back- scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and distributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 ram/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in providing detailed subsidence information near MLs.展开更多
The selective aerobic oxidation of alkynes to corresponding α,β-acetylenic ketones was achieved in polyethylene glycol/dense CO2/O2 biphasic system without any catalyst or additive. The effects of reaction parameter...The selective aerobic oxidation of alkynes to corresponding α,β-acetylenic ketones was achieved in polyethylene glycol/dense CO2/O2 biphasic system without any catalyst or additive. The effects of reaction parameters, e.g. temperature, CO2 pressure, PEG molecular weight and loading on the reaction were carefully examined. Moreover, various substrates worked well in the presence of PEG 1000 under 5 MPa of CO2 and 2 MPa of O2 at 100 ℃ for 12 to 24 h and acceptable yield and selectivity could be obtained in most cases. Preliminary mechanistic investigations were also discussed.展开更多
Sudden oak death(SOD)is one of the most rapid and destructive forest pathogens,which has caused the death of many host plants in Europe and America.There are currently no cases in China where there are more host plant...Sudden oak death(SOD)is one of the most rapid and destructive forest pathogens,which has caused the death of many host plants in Europe and America.There are currently no cases in China where there are more host plants and a more suitable climate for this pathogen to survive.Therefore,it is vital to discern the potential suitable habitat,quantify the risk levels,and monitor the potential high-risk areas.In this study,we modelled the potential invasion range and risk level of this pathogen at present and in future scenarios in China,using the least correlated components of all the environmental factors based on the Genetic Algorithm for Ruleset Production niche model and GIS analysis.The results indicate that most areas in China are free from a potential SOD risk,and the majority of potential occurrence areas are concentrated in Southern China(Yunnan,Sichuan,Guizhou,Chongqing,Hunan,Fujian).The area of high and extremely high risk in 2050(RCP26,RCP45,RCP60,and RCP85)is larger than that at present.The most susceptible area is Yunnan province with 80%of the area prone to SOD at extremely high risk in present and future scenarios.The results will be important for monitoring potential high-risk areas in the currently uninfected parts of China.展开更多
文摘Achieving more meaningful N2 conversion by reducing the energy input and carbon footprint is now being investigated through a method of N2 fixation instead of the Haber-Bosch process.Unfortunately,the electrochemical N2 reduction reaction(NRR)method as a rising approach currently still shows low selectivity(Faradaic efficiency<10%)and high-energy consumption[applied potential at least-0.2 V versus the reversible hydrogen electrode(RHE)].Here,the role of molybdenum aluminum boride single crystals,belonging to a family of ternary transition metal aluminum borides known as MAB phases,is reported for the electrochemical NRR for the first time,at a low applied potential(-0.05 V versus RHE)under ambient conditions and in alkaline media.Due to the unique nano-laminated crystal structure of the MAB phase,these inexpensive materials have been found to exhibit excellent electrocatalytic performances(NH3 yield:9.2μg h^-1cm^-2mgcat^-1.,Faradaic efficiency:30.1%)at the low overpotential,and to display a high chemical stability and sustained catalytic performance.In conjunction,further mechanism studies indicate B and Al as main-group metals show a highly selective affinity to N2 due to the strong interaction between the B 2p/Al 3p band and the N 2p orbitals,while Mo exhibits specific catalytic activity toward the subsequent reduction reaction.Overall,the MAB-phase catalyst under the synergy of the elements within ternary compound can suppress the hydrogen evolution reaction and achieve enhanced NRR performance.The significance of this work is to provide a promising candidate in the future synthesis of ammonia.
基金supported by the National Basic Research Program of China(973 Program)under Grant 2012CB719901the National Natural Science Foundation of China under Grant 41074005the 2013 Doctoral Innovation Funds of Southwest Jiaotong University
文摘Ground subsidence is one of the key factors damaging transportation facilities, e.g., road networks consisting of highways and railways. In this paper, we propose to apply the persistent scatterer synthetic aperture radar interferometry (PS-InSAR) approach that uses high- resolution TerraSAR-X (TSX) imagery to extract the regional scale subsidence rates (i.e., average annual sub- sidence in mm/year) along road networks. The primary procedures involve interferometric pair selection, interfer- ogram generation, persistent scatterer (PS) detection, PS networking, phase parameterization, and subsidence rate estimation. The Xiqing District in southwest Tianjin (China) is selected as the study area. This district contains one railway line and several highway lines. A total of 15 TSX images covering this area between April 2009 and June 2010 are utilized to obtain the subsidence rates by using the PS-InSAR (PSI) approach. The subsidence rates derived from PSI range from -68.7 to -1.3 mm/year. These findings show a significantly uneven subsidence pattern along the road network. Comparison between the PSI-derived subsidence rates and the leveling data obtained along the highways shows that the mean and standard deviation (SD) of the discrepancies between the two types of subsidence rates are 0.1 and 4-3.2 mm/year, respectively. The results indicate that the high-resolution TSX PSI is capable of providing comprehensive and detailed subsidence information regarding road networks with millimeter-level accuracy. Further inspections under geo- logical conditions and land-use categories in the study area indicate that the observed subsidence is highly related to aquifer compression due to groundwater pumping. Therefore, measures should be taken to mitigate groundwater extraction for the study area.
文摘Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is presented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back- scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and distributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 ram/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in providing detailed subsidence information near MLs.
基金supported by the National Natural Science Foundation of China(No.21172125)the Ministry of Science and Technology (2012BAD32B10)+1 种基金the "111" Project of Ministry of Education of China(Project No.B06005)the Committee of Science and Technology of Tianjin
文摘The selective aerobic oxidation of alkynes to corresponding α,β-acetylenic ketones was achieved in polyethylene glycol/dense CO2/O2 biphasic system without any catalyst or additive. The effects of reaction parameters, e.g. temperature, CO2 pressure, PEG molecular weight and loading on the reaction were carefully examined. Moreover, various substrates worked well in the presence of PEG 1000 under 5 MPa of CO2 and 2 MPa of O2 at 100 ℃ for 12 to 24 h and acceptable yield and selectivity could be obtained in most cases. Preliminary mechanistic investigations were also discussed.
基金supported by the Natural Science Foundation of China(No.41601368)the National Key Research and Development Program of China(No.2016YFB0501505)the Instrument Development Project of the State Key Laboratory of Remote Sensing Science(No.Y7Y01100KZ)
文摘Sudden oak death(SOD)is one of the most rapid and destructive forest pathogens,which has caused the death of many host plants in Europe and America.There are currently no cases in China where there are more host plants and a more suitable climate for this pathogen to survive.Therefore,it is vital to discern the potential suitable habitat,quantify the risk levels,and monitor the potential high-risk areas.In this study,we modelled the potential invasion range and risk level of this pathogen at present and in future scenarios in China,using the least correlated components of all the environmental factors based on the Genetic Algorithm for Ruleset Production niche model and GIS analysis.The results indicate that most areas in China are free from a potential SOD risk,and the majority of potential occurrence areas are concentrated in Southern China(Yunnan,Sichuan,Guizhou,Chongqing,Hunan,Fujian).The area of high and extremely high risk in 2050(RCP26,RCP45,RCP60,and RCP85)is larger than that at present.The most susceptible area is Yunnan province with 80%of the area prone to SOD at extremely high risk in present and future scenarios.The results will be important for monitoring potential high-risk areas in the currently uninfected parts of China.