Single event effects of 1-T structure programmable read-only memory(PROM) devices fabricated with a 130-nm complementary metal oxide semiconductorbased thin/thick gate oxide anti-fuse process were investigated using h...Single event effects of 1-T structure programmable read-only memory(PROM) devices fabricated with a 130-nm complementary metal oxide semiconductorbased thin/thick gate oxide anti-fuse process were investigated using heavy ions and a picosecond pulsed laser. The cross sections of a single event upset(SEU) for radiationhardened PROMs were measured using a linear energy transfer(LET) ranging from 9.2 to 95.6 MeV cm^2mg^(-1).The result indicated that the LET threshold for a dynamic bit upset was ~ 9 MeV cm^2mg^(-1), which was lower than the threshold of ~ 20 MeV cm^2mg^(-1) for an address counter upset owing to the additional triple modular redundancy structure present in the latch. In addition, a slight hard error was observed in the anti-fuse structure when employing209 Bi ions with extremely high LET values(~ 91.6 MeV cm^2mg^(-1)) and large ion fluence(~ 1×10~8 ions cm^(-2)). To identify the detailed sensitive position of a SEU in PROMs, a pulsed laser with a 5-μm beam spot was used to scan the entire surface of the device.This revealed that the upset occurred in the peripheral circuits of the internal power source and I/O pairs rather than in the internal latches and buffers. This was subsequently confirmed by a ^(181)Ta experiment. Based on the experimental data and a rectangular parallelepiped model of the sensitive volume, the space error rates for the used PROMs were calculated using the CRèME-96 prediction tool. The results showed that this type of PROM was suitable for specific space applications, even in the geosynchronous orbit.展开更多
We predict proton single event effect(SEE)error rates for the VATA160 ASIC chip on the Dark Matter Particle Explorer(DAMPE) to evaluate its radiation tolerance.Lacking proton test facilities,we built a Monte Carlo sim...We predict proton single event effect(SEE)error rates for the VATA160 ASIC chip on the Dark Matter Particle Explorer(DAMPE) to evaluate its radiation tolerance.Lacking proton test facilities,we built a Monte Carlo simulation tool named PRESTAGE to calculate the proton SEE cross-sections.PRESTAGE is based on the particle transport toolkit Geant4.It adopts a location-dependent strategy to derive the SEE sensitivity of the device from heavy-ion test data,which have been measured at the HI-13 tandem accelerator of the China Institute of Atomic Energy and the heavy-ion research facility in Lanzhou.The AP-8,SOLPRO,and August 1972 worst-case models are used to predict the average and peak proton fluxes on the DAMPE orbit.Calculation results show that the averaged proton SEE error rate for the VATA160 chip is approximately 2.17×10^(-5)/device/day.Worst-case error rates for the Van Allen belts and solar energetic particle events are 1-3 orders of magnitude higher than the averaged error rate.展开更多
Geant4 Monte Carlo simulation results of the single event upset(SEU)induced by protons with energy ranging from 0.3 MeV to 1 GeV are reported.The SEU cross section for planar and three-dimensional(3D)die-stacked SRAM ...Geant4 Monte Carlo simulation results of the single event upset(SEU)induced by protons with energy ranging from 0.3 MeV to 1 GeV are reported.The SEU cross section for planar and three-dimensional(3D)die-stacked SRAM are calculated.The results show that the SEU cross sections of the planar device and the 3D device are different from each other under low energy proton direct ionization mechanism,but almost the same for the high energy proton.Besides,the multi-bit upset(MBU)ratio and pattern are presented and analyzed.The results indicate that the MBU ratio of the 3D die-stacked device is higher than that of the planar device,and the MBU patterns are more complicated.Finally,the on-orbit upset rate for the 3D die-stacked device and the planar device are calculated by SPACE RADIATION software.The calculation results indicate that no matter what the orbital parameters and shielding conditions are,the on-orbit upset rate of planar device is higher than that of 3D die-stacked device.展开更多
For modern scaling devices,multiple cell upsets(MCUs)have become a major threat to high-reliability field-programmable gate array(FPGA)-based systems.Thus,both performing the worst-case irradiation tests to provide th...For modern scaling devices,multiple cell upsets(MCUs)have become a major threat to high-reliability field-programmable gate array(FPGA)-based systems.Thus,both performing the worst-case irradiation tests to provide the actual MCU response of devices and proposing an effective MCU distinction method are urgently needed.In this study,high-and medium-energy heavy-ion irradiations for the configuration random-access memory of 28 nm FPGAs are performed.An MCU extraction method supported by theoretical predictions is proposed to study the MCU sizes,shapes,and frequencies in detail.Based on the extraction method,the different percentages,and orientations of the large MCUs in both the azimuth and zenith directions determine the worse irradiation response of the FPGAs.The extracted largest 9-bit MCUs indicate that high-energy heavy ions can induce more severe failures than medium-energy ones.The results show that both the use of high-energy heavy ions during MCU evaluations and effective protection for the application of high-density 28 nm FPGAs in space are extremely necessary.展开更多
Multiple-bit upsets(MBUs)have become a threat to modern advanced field-programmable gate arrays(FPGAs)applications in radiation environments.Hence,many investigations have been conducted using mediumenergy heavy ions ...Multiple-bit upsets(MBUs)have become a threat to modern advanced field-programmable gate arrays(FPGAs)applications in radiation environments.Hence,many investigations have been conducted using mediumenergy heavy ions to study the effects of MBU radiation.However,high-energy heavy ions(HEHIs)greatly affect the size and percentage of MBUs because their ionizationtrack structures differ from those of medium-energy heavy ions.In this study,the different impacts of high-energy and medium-energy heavy ions on MBUs in 28 nm FPGAs as well as their mechanisms are thoroughly investigated.With the Geant4 calculation,more serious energy effects of HEHIs on MBU scales were successfully demonstrated.In addition,we identified worse MBU responses resulting from lowered voltages.The MBU orientation effect was observed in the radiation of different dimensions.The broadened ionization tracks for tilted tests in different dimensions could result in different MBU sizes.The results also revealed that the ionization tracks of tilted HEHIs have more severe impacts on the MBU scales than mediumenergy heavy ions with much higher linear energy transfer.Therefore,comprehensive radiation with HEHIs is indispensable for effective hardened designs to apply highdensity 28 nm FPGAs in deep space exploration.展开更多
Heavy-ion flux is an important experimental parameter in the ground based single event tests. The flux impact on a single event effect in different memory devices is analyzed by using GEANT4 and TCAD simulation method...Heavy-ion flux is an important experimental parameter in the ground based single event tests. The flux impact on a single event effect in different memory devices is analyzed by using GEANT4 and TCAD simulation methods. The transient radial track profile depends not only on the linear energy transfer (LET) of the incident ion, but also on the mass and energy of the ion. For the ions with the energies at the Bragg peaks, the radial charge distribution is wider when the ion LET is larger. The results extracted from the GEANT4 and TCAD simulations, together with detailed analysis of the device structure, are presented to demonstrate phenomena observed in the flux related experiment. The analysis shows that the flux effect conclusions drawn from the experiment are intrinsically connected and all indicate the mechanism that the flux effect stems from multiple ion-induced pulses functioning together and relies exquisitely on the specific response of the device.展开更多
The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured a...The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured at different temperatures.Three-dimensional(3D)technology computer-aided design simulations are carried out to study the SET pulse width and saturation current varying with temperature.Experimental and simulation results indicate that the increase in temperature will enhance the parasitic bipolar effect of bulk Fin FET technology,resulting in the increase of SET pulse width.On the other hand,the increase of inverter driven strength will change the layout topology,which has a complex influence on the SET temperature effects of Fin FET inverter chains.The experimental and simulation results show that the device with the strongest driven strength has the least dependence on temperature.展开更多
Three-dimensional integrated circuits(3D ICs)have entered into the mainstream due to their high performance,high integration,and low power consumption.When used in atmospheric environments,3D ICs are irradiated inevit...Three-dimensional integrated circuits(3D ICs)have entered into the mainstream due to their high performance,high integration,and low power consumption.When used in atmospheric environments,3D ICs are irradiated inevitably by neutrons.In this paper,a 3D die-stacked SRAM device is constructed based on a real planar SRAM device.Then,the single event upsets(SEUs)caused by neutrons with different energies are studied by the Monte Carlo method.The SEU cross-sections for each die and for the whole three-layer die-stacked SRAM device is obtained for neutrons with energy ranging from 1 MeV to 1000 MeV.The results indicate that the variation trend of the SEU cross-section for every single die and for the entire die-stacked device is consistent,but the specific values are different.The SEU cross-section is shown to be dependent on the threshold of linear energy transfer(LETth)and thickness of the sensitive volume(Tsv).The secondary particle distribution and energy deposition are analyzed,and the internal mechanism that is responsible for this difference is illustrated.Besides,the ratio and patterns of multiple bit upset(MBU)caused by neutrons with different energies are also presented.This work is helpful for the aerospace IC designers to understand the SEU mechanism of 3D ICs caused by neutrons irradiation.展开更多
The influences of total ionizing dose (TID) on the single event effect (SEE) sensitivity of 34-nm and 25-nm NAND flash memories are investigated in this paper. The increase in the cross section of heavy-ion single...The influences of total ionizing dose (TID) on the single event effect (SEE) sensitivity of 34-nm and 25-nm NAND flash memories are investigated in this paper. The increase in the cross section of heavy-ion single event upset (SEU) in memories that have ever been exposed to TID is observed, which is attributed to the combination of the threshold voltage shifts induced by 7-rays and heavy ions. Retention errors in floating gate (FG) cells after heavy ion irradiation are observed. Moreover, the cross section of retention error increases if the memory has ever been exposed to TID. This effect is more evident at a low linear energy transfer (LET) value. The underlying mechanism is identified as the combination of the defects induced by 7-rays and heavy ions, which increases the possibility to constitute a multi-trap assisted tunneling (m- TAT) path across the tunnel oxide.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11690041,11805244,and 11675233)the Opening Project of Science and Technology on Reliability Physics and Application Technology of the Electronic Component Laboratory(No.ZHD 201604)
文摘Single event effects of 1-T structure programmable read-only memory(PROM) devices fabricated with a 130-nm complementary metal oxide semiconductorbased thin/thick gate oxide anti-fuse process were investigated using heavy ions and a picosecond pulsed laser. The cross sections of a single event upset(SEU) for radiationhardened PROMs were measured using a linear energy transfer(LET) ranging from 9.2 to 95.6 MeV cm^2mg^(-1).The result indicated that the LET threshold for a dynamic bit upset was ~ 9 MeV cm^2mg^(-1), which was lower than the threshold of ~ 20 MeV cm^2mg^(-1) for an address counter upset owing to the additional triple modular redundancy structure present in the latch. In addition, a slight hard error was observed in the anti-fuse structure when employing209 Bi ions with extremely high LET values(~ 91.6 MeV cm^2mg^(-1)) and large ion fluence(~ 1×10~8 ions cm^(-2)). To identify the detailed sensitive position of a SEU in PROMs, a pulsed laser with a 5-μm beam spot was used to scan the entire surface of the device.This revealed that the upset occurred in the peripheral circuits of the internal power source and I/O pairs rather than in the internal latches and buffers. This was subsequently confirmed by a ^(181)Ta experiment. Based on the experimental data and a rectangular parallelepiped model of the sensitive volume, the space error rates for the used PROMs were calculated using the CRèME-96 prediction tool. The results showed that this type of PROM was suitable for specific space applications, even in the geosynchronous orbit.
基金supported by the National Natural Science Foundation of China(Nos.11179003,10975164,10805062,and 11005134)
文摘We predict proton single event effect(SEE)error rates for the VATA160 ASIC chip on the Dark Matter Particle Explorer(DAMPE) to evaluate its radiation tolerance.Lacking proton test facilities,we built a Monte Carlo simulation tool named PRESTAGE to calculate the proton SEE cross-sections.PRESTAGE is based on the particle transport toolkit Geant4.It adopts a location-dependent strategy to derive the SEE sensitivity of the device from heavy-ion test data,which have been measured at the HI-13 tandem accelerator of the China Institute of Atomic Energy and the heavy-ion research facility in Lanzhou.The AP-8,SOLPRO,and August 1972 worst-case models are used to predict the average and peak proton fluxes on the DAMPE orbit.Calculation results show that the averaged proton SEE error rate for the VATA160 chip is approximately 2.17×10^(-5)/device/day.Worst-case error rates for the Van Allen belts and solar energetic particle events are 1-3 orders of magnitude higher than the averaged error rate.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11690041 and 11675233)the Fund from the Science and Technology on Analog Integrated Circuit Laboratory,China(Grant No.JCKY2019210C054).
文摘Geant4 Monte Carlo simulation results of the single event upset(SEU)induced by protons with energy ranging from 0.3 MeV to 1 GeV are reported.The SEU cross section for planar and three-dimensional(3D)die-stacked SRAM are calculated.The results show that the SEU cross sections of the planar device and the 3D device are different from each other under low energy proton direct ionization mechanism,but almost the same for the high energy proton.Besides,the multi-bit upset(MBU)ratio and pattern are presented and analyzed.The results indicate that the MBU ratio of the 3D die-stacked device is higher than that of the planar device,and the MBU patterns are more complicated.Finally,the on-orbit upset rate for the 3D die-stacked device and the planar device are calculated by SPACE RADIATION software.The calculation results indicate that no matter what the orbital parameters and shielding conditions are,the on-orbit upset rate of planar device is higher than that of 3D die-stacked device.
基金supported by the National Natural Science Foundation of China(Nos.12035019 and 11690041).
文摘For modern scaling devices,multiple cell upsets(MCUs)have become a major threat to high-reliability field-programmable gate array(FPGA)-based systems.Thus,both performing the worst-case irradiation tests to provide the actual MCU response of devices and proposing an effective MCU distinction method are urgently needed.In this study,high-and medium-energy heavy-ion irradiations for the configuration random-access memory of 28 nm FPGAs are performed.An MCU extraction method supported by theoretical predictions is proposed to study the MCU sizes,shapes,and frequencies in detail.Based on the extraction method,the different percentages,and orientations of the large MCUs in both the azimuth and zenith directions determine the worse irradiation response of the FPGAs.The extracted largest 9-bit MCUs indicate that high-energy heavy ions can induce more severe failures than medium-energy ones.The results show that both the use of high-energy heavy ions during MCU evaluations and effective protection for the application of high-density 28 nm FPGAs in space are extremely necessary.
基金the National Natural Science Foundation of China(Nos.12035019 and 12105339).
文摘Multiple-bit upsets(MBUs)have become a threat to modern advanced field-programmable gate arrays(FPGAs)applications in radiation environments.Hence,many investigations have been conducted using mediumenergy heavy ions to study the effects of MBU radiation.However,high-energy heavy ions(HEHIs)greatly affect the size and percentage of MBUs because their ionizationtrack structures differ from those of medium-energy heavy ions.In this study,the different impacts of high-energy and medium-energy heavy ions on MBUs in 28 nm FPGAs as well as their mechanisms are thoroughly investigated.With the Geant4 calculation,more serious energy effects of HEHIs on MBU scales were successfully demonstrated.In addition,we identified worse MBU responses resulting from lowered voltages.The MBU orientation effect was observed in the radiation of different dimensions.The broadened ionization tracks for tilted tests in different dimensions could result in different MBU sizes.The results also revealed that the ionization tracks of tilted HEHIs have more severe impacts on the MBU scales than mediumenergy heavy ions with much higher linear energy transfer.Therefore,comprehensive radiation with HEHIs is indispensable for effective hardened designs to apply highdensity 28 nm FPGAs in deep space exploration.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532261,11690041,and 11675233)
文摘Heavy-ion flux is an important experimental parameter in the ground based single event tests. The flux impact on a single event effect in different memory devices is analyzed by using GEANT4 and TCAD simulation methods. The transient radial track profile depends not only on the linear energy transfer (LET) of the incident ion, but also on the mass and energy of the ion. For the ions with the energies at the Bragg peaks, the radial charge distribution is wider when the ion LET is larger. The results extracted from the GEANT4 and TCAD simulations, together with detailed analysis of the device structure, are presented to demonstrate phenomena observed in the flux related experiment. The analysis shows that the flux effect conclusions drawn from the experiment are intrinsically connected and all indicate the mechanism that the flux effect stems from multiple ion-induced pulses functioning together and relies exquisitely on the specific response of the device.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12035019,12105339,and62174180)the Opening Special Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect,China(Grant No.SKLIPR2113)。
文摘The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured at different temperatures.Three-dimensional(3D)technology computer-aided design simulations are carried out to study the SET pulse width and saturation current varying with temperature.Experimental and simulation results indicate that the increase in temperature will enhance the parasitic bipolar effect of bulk Fin FET technology,resulting in the increase of SET pulse width.On the other hand,the increase of inverter driven strength will change the layout topology,which has a complex influence on the SET temperature effects of Fin FET inverter chains.The experimental and simulation results show that the device with the strongest driven strength has the least dependence on temperature.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12035019,111690041,and 11675233)the Project of Science and Technology on Analog Integrated Circuit Laboratory,China((Grant No.6142802WD201801).
文摘Three-dimensional integrated circuits(3D ICs)have entered into the mainstream due to their high performance,high integration,and low power consumption.When used in atmospheric environments,3D ICs are irradiated inevitably by neutrons.In this paper,a 3D die-stacked SRAM device is constructed based on a real planar SRAM device.Then,the single event upsets(SEUs)caused by neutrons with different energies are studied by the Monte Carlo method.The SEU cross-sections for each die and for the whole three-layer die-stacked SRAM device is obtained for neutrons with energy ranging from 1 MeV to 1000 MeV.The results indicate that the variation trend of the SEU cross-section for every single die and for the entire die-stacked device is consistent,but the specific values are different.The SEU cross-section is shown to be dependent on the threshold of linear energy transfer(LETth)and thickness of the sensitive volume(Tsv).The secondary particle distribution and energy deposition are analyzed,and the internal mechanism that is responsible for this difference is illustrated.Besides,the ratio and patterns of multiple bit upset(MBU)caused by neutrons with different energies are also presented.This work is helpful for the aerospace IC designers to understand the SEU mechanism of 3D ICs caused by neutrons irradiation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11690041,11675233,U1532261,and 11505243)
文摘The influences of total ionizing dose (TID) on the single event effect (SEE) sensitivity of 34-nm and 25-nm NAND flash memories are investigated in this paper. The increase in the cross section of heavy-ion single event upset (SEU) in memories that have ever been exposed to TID is observed, which is attributed to the combination of the threshold voltage shifts induced by 7-rays and heavy ions. Retention errors in floating gate (FG) cells after heavy ion irradiation are observed. Moreover, the cross section of retention error increases if the memory has ever been exposed to TID. This effect is more evident at a low linear energy transfer (LET) value. The underlying mechanism is identified as the combination of the defects induced by 7-rays and heavy ions, which increases the possibility to constitute a multi-trap assisted tunneling (m- TAT) path across the tunnel oxide.