Acidic poly(ionic liquid)s(PILs)with swelling ability were synthesized by free radical copolymerization of N-vinylimidazolium ionic liquids,divinylbenzene(DVB)and sodium acrylate(NaAA),and further acidification by sul...Acidic poly(ionic liquid)s(PILs)with swelling ability were synthesized by free radical copolymerization of N-vinylimidazolium ionic liquids,divinylbenzene(DVB)and sodium acrylate(NaAA),and further acidification by sulfuric acid.The swelling ability of acidic PILs was greatly affected by cross-linker content and chain length of 3-alkyl-substituents on imidazolium.Cross-linked network structures could be observed from the cryogenic scanning electron microscopy(cryo-SEM)images of the swollen acidic PILs in formic acid.Acidic PILs with network structures in swollen state exhibited excellent activities in the esterification of cyclohexene and formic acid,and the catalytic activities were in positive correlation with their swelling abilities.Acidic PIL with 3-octyl-substituent and 2.5 mol%DVB(PIL-C8-2.5DVB-HSO4)had the highest swelling ability in formic acid and exhibited comparable catalytic activities with homogeneous catalysts such as sulfuric acid and p-toluenesulfonic acid.展开更多
Tea tree oil is extracted from the leaves and twigs of Melaleuca alternifolia (Maiden & Betche) Cheel, and it is widely used in medicines, food preservatives, cosmetics and health care products. Traditional propaga...Tea tree oil is extracted from the leaves and twigs of Melaleuca alternifolia (Maiden & Betche) Cheel, and it is widely used in medicines, food preservatives, cosmetics and health care products. Traditional propagation of M. alternifolia from seeds does not necessarily transfer the desired characteristics from their mother trees, the seedlings are not uniform, and the multiplication rate from cuttings is relatively low. For these reasons, it is necessary to develop tissue culture techniques for this species. This study showed that an efficient explant initiation medium for M. alternifolia was MS 1/2 + BA 0.6mg L^-1 +NAA 0.1 mg L^-1+sucrose 30g L-l, which yielded a 75.9 % initiation rate. An efficient multi- plication medium was MS + BA 0.3 mg L^-1+ NAA 0.15 mg L^-1 + sucrose 30 g L^-1, which yielded a 4.3 multiplication rate and 3.2 cm shoot length. The rooting medium was MS 1/2 + IBA 0.1-0.25 mg L^-1 + sucrose 15 g L^-1, which yielded a 100 % rooting rate, 2.94-3.32 roots per individual and 1.36-1.44 cm root length. Local red-core soil was suitable as a transplant medium, and yielded 98 % survival. This study improved the tissue culture technique for mass-propagation of M. alternifolia, enabling the production of high quality plants for market.展开更多
基金This work was supported by the National Natural Science Foundation of China(21773068,21811530273,21573072)the National Key Research and Development Program of China(2017YFA0403102)Shanghai Leading Academic Discipline Project(B409).
文摘Acidic poly(ionic liquid)s(PILs)with swelling ability were synthesized by free radical copolymerization of N-vinylimidazolium ionic liquids,divinylbenzene(DVB)and sodium acrylate(NaAA),and further acidification by sulfuric acid.The swelling ability of acidic PILs was greatly affected by cross-linker content and chain length of 3-alkyl-substituents on imidazolium.Cross-linked network structures could be observed from the cryogenic scanning electron microscopy(cryo-SEM)images of the swollen acidic PILs in formic acid.Acidic PILs with network structures in swollen state exhibited excellent activities in the esterification of cyclohexene and formic acid,and the catalytic activities were in positive correlation with their swelling abilities.Acidic PIL with 3-octyl-substituent and 2.5 mol%DVB(PIL-C8-2.5DVB-HSO4)had the highest swelling ability in formic acid and exhibited comparable catalytic activities with homogeneous catalysts such as sulfuric acid and p-toluenesulfonic acid.
文摘Tea tree oil is extracted from the leaves and twigs of Melaleuca alternifolia (Maiden & Betche) Cheel, and it is widely used in medicines, food preservatives, cosmetics and health care products. Traditional propagation of M. alternifolia from seeds does not necessarily transfer the desired characteristics from their mother trees, the seedlings are not uniform, and the multiplication rate from cuttings is relatively low. For these reasons, it is necessary to develop tissue culture techniques for this species. This study showed that an efficient explant initiation medium for M. alternifolia was MS 1/2 + BA 0.6mg L^-1 +NAA 0.1 mg L^-1+sucrose 30g L-l, which yielded a 75.9 % initiation rate. An efficient multi- plication medium was MS + BA 0.3 mg L^-1+ NAA 0.15 mg L^-1 + sucrose 30 g L^-1, which yielded a 4.3 multiplication rate and 3.2 cm shoot length. The rooting medium was MS 1/2 + IBA 0.1-0.25 mg L^-1 + sucrose 15 g L^-1, which yielded a 100 % rooting rate, 2.94-3.32 roots per individual and 1.36-1.44 cm root length. Local red-core soil was suitable as a transplant medium, and yielded 98 % survival. This study improved the tissue culture technique for mass-propagation of M. alternifolia, enabling the production of high quality plants for market.