期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Robust adaptive UKF based on SVR for inertial based integrated navigation 被引量:8
1
作者 Meng-de Zhang Hai-fa Dai +1 位作者 bai-qing hu Qi Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期846-855,共10页
Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper pr... Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper proposes a robust adaptive UKF algorithm based on Support Vector Regression(SVR).The algorithm combines the advantages of support vector regression with small samples,nonlinear learning ability and online estimation capability of adaptive algorithm based on innovation.Firstly,the SVR model is trained by using the innovation in the sliding window,and the new innovation is monitored.If the deviation between the estimated innovation and the measured innovation exceeds a given threshold,then measured innovation will be replaced by the predicted innovation,and then the processed innovation is used to calculate the measurement noise covariance matrix using the adaptive estimation algorithm.Simulation experiments and measured data experiments show that SVRUKF is significantly better than the traditional UKF,robust UKF and adaptive UKF algorithms for the case where the covariance matrix is unknown and the measured values have outliers. 展开更多
关键词 Integrated navigation Support vector regression Unscented Kalman filter Robust filter Adaptive filter
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部