Target occlusion poses a significant challenge in computer vision,particularly in agricultural applications,where occlusion of crops can obscure key features and impair the model’s recognition performance.To address ...Target occlusion poses a significant challenge in computer vision,particularly in agricultural applications,where occlusion of crops can obscure key features and impair the model’s recognition performance.To address this challenge,a mushroom recognition method was proposed based on an erase module integrated into the EL-DenseNet model.EL-DenseNet,an extension of DenseNet,incorporated an erase attention module designed to enhance sensitivity to visible features.The erase module helped eliminate complex backgrounds and irrelevant information,allowing the mushroom body to be preserved and increasing recognition accuracy in cluttered environments.Considering the difficulty in distinguishing similar mushroom species,label smoothing regularization was employed to mitigate mislabeling errors that commonly arose from human observers.This strategy converted hard labels into soft labels during training,reducing the model’s overreliance on noisy labels and improving its generalization ability.Experimental results showed that the proposed EL-DenseNet,when combined with transfer learning,achieved a recognition accuracy of 96.7%for mushrooms in occluded and complex backgrounds.Compared with the original DenseNet and other classic models,this approach demonstrated superior accuracy and robustness,providing a promising solution for intelligent mushroom recognition.展开更多
文摘Target occlusion poses a significant challenge in computer vision,particularly in agricultural applications,where occlusion of crops can obscure key features and impair the model’s recognition performance.To address this challenge,a mushroom recognition method was proposed based on an erase module integrated into the EL-DenseNet model.EL-DenseNet,an extension of DenseNet,incorporated an erase attention module designed to enhance sensitivity to visible features.The erase module helped eliminate complex backgrounds and irrelevant information,allowing the mushroom body to be preserved and increasing recognition accuracy in cluttered environments.Considering the difficulty in distinguishing similar mushroom species,label smoothing regularization was employed to mitigate mislabeling errors that commonly arose from human observers.This strategy converted hard labels into soft labels during training,reducing the model’s overreliance on noisy labels and improving its generalization ability.Experimental results showed that the proposed EL-DenseNet,when combined with transfer learning,achieved a recognition accuracy of 96.7%for mushrooms in occluded and complex backgrounds.Compared with the original DenseNet and other classic models,this approach demonstrated superior accuracy and robustness,providing a promising solution for intelligent mushroom recognition.