As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UA...As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.展开更多
A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman fil...A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman filter cannot handle uncertainties ina process model, such as initial state estimation errors, parametermismatch and abrupt state changes. These uncertainties severelyaffect filter performance and may even provoke divergence. Astrong tracking filter (STF), which utilizes a suboptimal fading factor,is an adaptive approach that is commonly adopted to solvethis problem. However, if the strong tracking SCKF (STSCKF)uses the same method as the extended Kalman filter (EKF) tointroduce the suboptimal fading factor, it greatly increases thecomputational load. To avoid this problem, a low-cost introductorymethod is proposed and a hypothesis testing theory is applied todetect uncertainties. The computational load analysis is performedby counting the total number of floating-point operations and it isfound that the computational load of LCASCKF is close to that ofSCKF. Experimental results prove that the LCASCKF performs aswell as STSCKF, while the increase in computational load is muchlower than STSCKF.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
The problem of cloud cooperation of military service providers(MSPs) is addressed for allocating limited resources to military service users(MSUs) that are geographically distributed. The MSPs, also called militar...The problem of cloud cooperation of military service providers(MSPs) is addressed for allocating limited resources to military service users(MSUs) that are geographically distributed. The MSPs, also called military organization clouds, are virtualized and encapsulated by the services they can offer and each of them contains different kinds of resources that MSU needs. The MSPs are also geographically dispersed. They are required to allocate their resources to the MSU complying with the corresponding quality of service(QoS), so that each MSU gathers the services it needs to guarantee its task to be implemented. The outline of military organization cloud cooperation is discussed and the method of service optimal selection is proposed based on QoS evaluation. The QoS evaluation method based on exponential approximation is put forward to include the users' will. Simulation results verify the effectiveness of the proposed algorithm.展开更多
This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users...This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users(MSU). A group of atom services, each of which has its level of quality of service(QoS), can be combined together into a certain structure to form a composite service. Since there are a large number of atom services having the same function, the atom service is selected to participate in the composite service so as to fulfill users' will. In this paper a method based on discrete particle swarm optimization(DPSO) is proposed to tackle this problem. The method aims at selecting atom services from service repositories to constitute the composite service, satisfying the MSU's requirement on QoS. Since the QoS criteria include location-aware criteria and location-independent criteria, this method aims to get the composite service with the highest location-aware criteria and the best-match location-independent criteria. Simulations show that the DPSO has a better performance compared with the standard particle swarm optimization(PSO) and genetic algorithm(GA).展开更多
Aiming at the problem that the traditional Dempster Shafer (D-S) evidence theory cannot deal with conflicted evidences effectively and correctly, this paper points out that the key issue of this problem is to measure ...Aiming at the problem that the traditional Dempster Shafer (D-S) evidence theory cannot deal with conflicted evidences effectively and correctly, this paper points out that the key issue of this problem is to measure the degree of conflict between evidences correctly after analyzing various improved methods. The existing evidence conflict measure methods are analyzed, and a new evidence conflict measure method called evidence similarity measure based on the Tanimoto measure is proposed, while a new evidence combination method is proposed on the basis of evidence similarity measure. Firstly, the conflict degrees between evidences are obtained through the evidence similarity measure. Then the evidence sources are modified based on the credibility of different evidences and the weights of conflicted parts of evidences on different focal elements are determined. Finally, the fusion result is obtained by this method. Numerical examples show that the proposed method can effectively fuse evidences when evidences are consistent or highly conflicted, and it has a fast convergence speed, a high degree of accuracy and good adaptability.展开更多
基金supported by the National Natural Science Foundation of China (No. 62073267)。
文摘As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.
基金supported by the National Natural Science Foundation of China(61573283)
文摘A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman filter cannot handle uncertainties ina process model, such as initial state estimation errors, parametermismatch and abrupt state changes. These uncertainties severelyaffect filter performance and may even provoke divergence. Astrong tracking filter (STF), which utilizes a suboptimal fading factor,is an adaptive approach that is commonly adopted to solvethis problem. However, if the strong tracking SCKF (STSCKF)uses the same method as the extended Kalman filter (EKF) tointroduce the suboptimal fading factor, it greatly increases thecomputational load. To avoid this problem, a low-cost introductorymethod is proposed and a hypothesis testing theory is applied todetect uncertainties. The computational load analysis is performedby counting the total number of floating-point operations and it isfound that the computational load of LCASCKF is close to that ofSCKF. Experimental results prove that the LCASCKF performs aswell as STSCKF, while the increase in computational load is muchlower than STSCKF.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
基金supported by the National Natural Science Foundation of China(61573283)the National Basic Research Program of China(973 Program)(2010CB734104)
文摘The problem of cloud cooperation of military service providers(MSPs) is addressed for allocating limited resources to military service users(MSUs) that are geographically distributed. The MSPs, also called military organization clouds, are virtualized and encapsulated by the services they can offer and each of them contains different kinds of resources that MSU needs. The MSPs are also geographically dispersed. They are required to allocate their resources to the MSU complying with the corresponding quality of service(QoS), so that each MSU gathers the services it needs to guarantee its task to be implemented. The outline of military organization cloud cooperation is discussed and the method of service optimal selection is proposed based on QoS evaluation. The QoS evaluation method based on exponential approximation is put forward to include the users' will. Simulation results verify the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61573283)
文摘This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users(MSU). A group of atom services, each of which has its level of quality of service(QoS), can be combined together into a certain structure to form a composite service. Since there are a large number of atom services having the same function, the atom service is selected to participate in the composite service so as to fulfill users' will. In this paper a method based on discrete particle swarm optimization(DPSO) is proposed to tackle this problem. The method aims at selecting atom services from service repositories to constitute the composite service, satisfying the MSU's requirement on QoS. Since the QoS criteria include location-aware criteria and location-independent criteria, this method aims to get the composite service with the highest location-aware criteria and the best-match location-independent criteria. Simulations show that the DPSO has a better performance compared with the standard particle swarm optimization(PSO) and genetic algorithm(GA).
基金supported by the National Natural Science Foundation of China(61573283)
文摘Aiming at the problem that the traditional Dempster Shafer (D-S) evidence theory cannot deal with conflicted evidences effectively and correctly, this paper points out that the key issue of this problem is to measure the degree of conflict between evidences correctly after analyzing various improved methods. The existing evidence conflict measure methods are analyzed, and a new evidence conflict measure method called evidence similarity measure based on the Tanimoto measure is proposed, while a new evidence combination method is proposed on the basis of evidence similarity measure. Firstly, the conflict degrees between evidences are obtained through the evidence similarity measure. Then the evidence sources are modified based on the credibility of different evidences and the weights of conflicted parts of evidences on different focal elements are determined. Finally, the fusion result is obtained by this method. Numerical examples show that the proposed method can effectively fuse evidences when evidences are consistent or highly conflicted, and it has a fast convergence speed, a high degree of accuracy and good adaptability.