期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mechanical Sensitive Molecule MACF1 Promotes Osteoblast Differentiation
1
作者 Lifang Hu Chong Yin +5 位作者 Zixiang Wu Zizhang Huang Peihong Su Yan Zhang Zhihao Chen airong qian 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期71-72,共2页
The decreased osteoblast differentiation associated with reduced bone formation is one main cause of microgravityinduced bone loss.Our previous studies have demonstrated that microtubule actin crosslinking factor 1(MA... The decreased osteoblast differentiation associated with reduced bone formation is one main cause of microgravityinduced bone loss.Our previous studies have demonstrated that microtubule actin crosslinking factor 1(MACF1)is downregulated in association with the decreased osteoblast differentiation and bone formation under simulated microgravity conditions.These findings suggest that MACF1 is sensitive to mechanical condition and may be critical for osteoblast differentiation and bone formation.To verify this hypothesis,current study investigates the role and mechanism of MACF1 in regulatingosteoblast differentiation by adopting MACF1 knockdown(MACF1-KD)osteoblasts.The results showed that MACF1 knockdown suppressed mineralized nodules formation,alkaline phosphatase(ALP)activity,osteogenic gene expression andβ-catenin signaling transduction.Moreover,we used RNA sequencing(RNA-seq)and chromatin immunoprecipitation sequencing(ChIP-seq)to investigate further mechanism.Interestingly,we found that MACF1 sequesterd repressors of osteoblast differentiation in cytoplasm.In conclusion,MACF1 is sensitive to mechanical condition and plays key role in activatingβ-catenin signaling transduction and sequestering repressors of osteoblast differentiation,which further promotes osteoblast differentiation. 展开更多
关键词 MACF1 OSTEOBLAST cell DIFFERENTIATION Β-CATENIN SIGNALING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部