期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical modelling of stress analysis around rectangular tunnels with large discontinuities(fault) by a hybridized indirect BEM 被引量:8
1
作者 Nooraddin Nikadat Mohammad Fatehi abolfazl abdollahipour 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4291-4299,共9页
Tunnels are one of the major transportation routes to pass mountains and difficult geological conditions. The behavior of these structures is significantly influenced by rock mass and discontinuities. Orientation of d... Tunnels are one of the major transportation routes to pass mountains and difficult geological conditions. The behavior of these structures is significantly influenced by rock mass and discontinuities. Orientation of discontinuities is one of the most important geometrical parameters affecting discontinuities behavior. The effect of large discontinuities(faults) behavior on a jointed medium around rectangular tunnels is studied. A hybridized indirect boundary element code named TFSDDM(fictitious stress displacement discontinuity method) is used to study the stress distribution around the tunnels excavated in jointed rock masses. The code uses advantages of both fictitious stress and displacement discontinuity methods to analyze discontinuity effects more accurately. Results show that the dip angle of discontinuities has significant effect on stress distribution around the tunnel. It is also shown that increase in the discontinuities dip angle located in the roof will result in decrease in tensile stress of the roof. Stresses reaches to 8 MPa in the roof while due to dilation effect they reach up to 13 MPa. 展开更多
关键词 DISPLACEMENT DISCONTINUITY method fictitious stres
在线阅读 下载PDF
Sensitivity analysis of geomechanical parameters affecting a wellbore stability 被引量:3
2
作者 abolfazl abdollahipour Hamid SOLTANIAN +2 位作者 Yaser POURMAZAHERI Ezzatollah KAZEMZADEH Mohammad FATEHI-MARJI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期768-778,共11页
Wellbore stability analysis is a growing concern in oil industries. There are many parameters affecting the stability of a wellbore including geomechanical properties (e.g., elastic modulus, uni-axial compressive stre... Wellbore stability analysis is a growing concern in oil industries. There are many parameters affecting the stability of a wellbore including geomechanical properties (e.g., elastic modulus, uni-axial compressive strength (UCS) and cohesion) and acting forces (e.g., field stresses and mud pressure). Accurate determination of these parameters is time-consuming, expensive and sometimes even impossible. This work offers a systematic sensitivity analysis to quantify the amount of each parameter’s effect on the stability of a wellbore. Maximum wellbore wall displacement is used as a stability factor to study the stability of a wellbore. A 3D finite difference method with Mohr model is used for the numerical modeling. The numerical model is verified against an analytical solution. A dimensionless sensitivity factor is developed in order to compare the results of various parameters in the sensitivity analysis. The results show a different order of importance of parameters based on rock strength. The most sensitive properties for a weak rock are the maximum horizontal stress, internal friction angle and formation pressure, respectively, while for a strong rock, the most sensitive parameters are the maximum horizontal stress, mud pressure and pore pressure, respectively. The amount of error in wellbore stability analysis inflicted by the error in estimation of each parameter was also derived. 展开更多
关键词 wellbore stability sensitivity analysis numerical modeling
在线阅读 下载PDF
On the accuracy of higher order displacement discontinuity method(HODDM) in the solution of linear elastic fracture mechanics problems 被引量:1
3
作者 abolfazl abdollahipour Mohammad Fatehi Marji +1 位作者 Alireza Yarahmadi Bafghi Javad Gholamnejad 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2941-2950,共10页
The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example ... The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example problems from the fracture mechanics literature(with available analytical solutions) including center slant crack in an infinite and finite body, single and double edge cracks, cracks emanating from a circular hole. The numerical values of Mode Ⅰ and Mode Ⅱ SIFs for these problems using HODDM are in excellent agreement with analytical results(reaching up to 0.001% deviation from their analytical results). The HODDM is also compared with the XFEM and a modified XFEM results. The results show that the HODDM needs a considerably lower computational effort(with less than 400 nodes) than the XFEM and the modified XFEM(which needs more than 10000 nodes) to reach a much higher accuracy. The proposed HODDM offers higher accuracy and lower computation effort for a wide range of problems in LEFM. 展开更多
关键词 ACCURACY higher order displacement discontinuity method LEFM mode stress intensity factor mode stress intensity factor
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部