期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
广告点击率预估的逐层残差交互网络 被引量:2
1
作者 尹云飞 龙连杰 +1 位作者 黄发良 吴开贵 《计算机学报》 EI CAS CSCD 北大核心 2024年第3期575-588,共14页
网络广告费的收取通常是以用户的点击次数来计算的,因此如何准确地预估点击率(CTR)是广告公司十分关心的问题.当前先进水平的方法集中在构建各种高阶特征交互模型来预估CTR,但是高阶特征交互会丢失低阶信息,尤其是丢失原始特征的信息.为... 网络广告费的收取通常是以用户的点击次数来计算的,因此如何准确地预估点击率(CTR)是广告公司十分关心的问题.当前先进水平的方法集中在构建各种高阶特征交互模型来预估CTR,但是高阶特征交互会丢失低阶信息,尤其是丢失原始特征的信息.为此,本文提出一个新的逐层残差交互网络,它在每次交互时都考虑原始特征的引导作用,被命名为逐层残差交互网(LRIN).LRIN强调高阶特征交互应该建立在原始特征逐层交互的基础上.n阶特征交互由原始特征与n-1阶特征通过元素积运算得到.进而,本文引入了多尺度方法来设计注意力网络.受逐层交互的影响,注意力网络也被设计成多层,称之为逐层注意力网络.为了将二者结合起来,本文提出将逐层残差交互网络的输出作为逐层注意力网络的权重,由此形成了一种新的双网络训练模型.在多个benchmark数据集上的实验结果表明,LRIN的性能比当前先进的方法在Criteo数据集上平均提高1.24%,在Avazu数据集上平均提高2.16%,在MovieLens-1M数据集上平均提高了1.3%,在Book-Crossing数据集上平均提高了1.27%. 展开更多
关键词 残差网络 逐层 特征交互 CTR预估 注意力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部