提出一种基于卢卡斯数列构造围长至少为8的规则(j,k)卢卡斯QC-LDPC(L-QC-LDPC)码的方法。该方法构造的码字围长较大,能够有效地消除短环。循环置换子矩阵维数p值的下界允许连续取值,且在硬件实现方面可节省存储空间,进而降低硬件实现成...提出一种基于卢卡斯数列构造围长至少为8的规则(j,k)卢卡斯QC-LDPC(L-QC-LDPC)码的方法。该方法构造的码字围长较大,能够有效地消除短环。循环置换子矩阵维数p值的下界允许连续取值,且在硬件实现方面可节省存储空间,进而降低硬件实现成本以及复杂度。仿真结果表明,在码率为1/2、码长为1 302和误码率为10?6时,L-QC-LDPC码与OCS-LDPC码相比,净编码增益(NCG)提高了约2 d B,比确定性码的NCG提高了约0.8 d B;与二次函数相比,性能略优于二次函数LDPC(QF-LDPC)码,有约0.1 d B NCG的改善。同时,在相同码率、相近码长和误码率为10^(-6)时,L-QC-LDPC码与基于有限域的循环子集构造的QC-LDPC码相比,提高了约0.5 d B的净编码增益。展开更多
文摘利用全球导航卫星系统(Global Navigation Satellite System,GNSS)双频差分信号进行电离层电子含量反演是一种常用的电离层探测手段,但GNSS信号在强电磁干扰环境下,被淹没于电磁噪声中而无法被提取,影响电离层总电子含量(total electron content,TEC)反演系统的可靠性。采用传统调零抗干扰阵列天线方案能解决干扰源剥离的问题,但调零信号的天线相位中心不稳定导致高精度的相位平滑伪距和精密单点定位(precise point positioning,PPP)算法无法收敛。针对强干扰环境下的电离层监测需求,本文提出一种抗干扰TEC数据反演手段,通过对阵列天线通道幅相一致性进行校正,保证相位中心的稳定性,从而推算出准确的电离层TEC信息,提高了系统的可靠性和抗干扰能力。
文摘提出一种基于卢卡斯数列构造围长至少为8的规则(j,k)卢卡斯QC-LDPC(L-QC-LDPC)码的方法。该方法构造的码字围长较大,能够有效地消除短环。循环置换子矩阵维数p值的下界允许连续取值,且在硬件实现方面可节省存储空间,进而降低硬件实现成本以及复杂度。仿真结果表明,在码率为1/2、码长为1 302和误码率为10?6时,L-QC-LDPC码与OCS-LDPC码相比,净编码增益(NCG)提高了约2 d B,比确定性码的NCG提高了约0.8 d B;与二次函数相比,性能略优于二次函数LDPC(QF-LDPC)码,有约0.1 d B NCG的改善。同时,在相同码率、相近码长和误码率为10^(-6)时,L-QC-LDPC码与基于有限域的循环子集构造的QC-LDPC码相比,提高了约0.5 d B的净编码增益。