期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MVMD-BKA-Transformer的短期光伏功率预测
1
作者 黄瑞承 成燕 +1 位作者 查航伟 董国鹏 《电源技术》 2025年第10期2182-2190,共9页
针对传统分解预测方法忽略多元气象因素分解时自身在时域及频域上的耦合关系,及Transformer训练时间长、学习效率低等问题,提出基于多元变分模态分解(MVMD)和黑翅鸢优化算法(BKA)改进的Transformer的短期光伏功率预测方法。利用K-means... 针对传统分解预测方法忽略多元气象因素分解时自身在时域及频域上的耦合关系,及Transformer训练时间长、学习效率低等问题,提出基于多元变分模态分解(MVMD)和黑翅鸢优化算法(BKA)改进的Transformer的短期光伏功率预测方法。利用K-means算法,根据辐照度将数据分类为α类和β类,并使用MVMD将多元气象因素及光伏功率分解为频率对齐的多元本征模态函数,保留原始序列耦合性的基础上,提高气象因素的平稳性。针对多元本征模态函数,分别构建BKA改进过的Transformer预测模型。选用澳大利亚沙漠知识太阳能中心(DKASC)的数据集进行验证与对比。实验仿真结果显示,提出的模型各项误差指标表现最优,具有较高的预测精度。 展开更多
关键词 光伏功率预测 多元变分模态分解 黑翅鸢优化算法 Transformer
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部