The electronic structures, magnetic properties, half-metallicity, and mechanical properties of half-Heulser compounds CoCrZ (Z = S, Se, and Te) were investigated using first-principles calculations within generalize...The electronic structures, magnetic properties, half-metallicity, and mechanical properties of half-Heulser compounds CoCrZ (Z = S, Se, and Te) were investigated using first-principles calculations within generalized gradient approximation based on the density function theory. The half-Heusler compounds show half-metallic properties with a half-metallic gap of 0.15 eV for CoCrS, 0.10 eV for CoCrSe, and 0.31 eV for CoCrTe at equilibrium lattice constant, respectively. The total magnetic moments are 3.00/-tB per formula unit, which agrees well with the Slater-Pauling rule. The half-metallicity, elastic constants, bulk modulus, shear modulus, Pough's ratio, Frantesvich ratio, Young's modulus, Poisson's ratio, and Debye temperature at equilibrium lattice constant and versus lattice constants are reported for the first time. The results indicate that the half-Heulser compounds CoCrZ (Z = S, Se, and Te) maintain the perfect half-metallic and mechanical stability within the lattice constants range of 5.18-5.43 A for CoCrS, 5.09-5.61 A for CoCrSe, and 5.17-6.42 A for CoCrTe, respectively.展开更多
The mechanical properties, thermal properties, electronic structures, and optical properties of the defect perovskites Cs2SnX6(X = Cl, Br, I) were investigated by first-principles calculation using PBE and HSE06 hyb...The mechanical properties, thermal properties, electronic structures, and optical properties of the defect perovskites Cs2SnX6(X = Cl, Br, I) were investigated by first-principles calculation using PBE and HSE06 hybrid functional. The optic band gaps based on HSE06 are 3.83 eV for Cs2SnCl6, 2.36 eV for Cs2SnBr6, and 0.92 eV for Cs2SnI6, which agree with the experimental results. The Cs2SnCl6, Cs2SnBr6, and Cs2SnI6 are mechanically stable and they are all anisotropic and ductile in nature. Electronic structures calculations show that the conduction band consists mainly of hybridization between the halogen p orbitals and Sn 5s orbitals, whereas the valence band is composed of the halogen p orbitals. Optic properties indicate that these three compounds exhibit good optical absorption in the ultraviolet region, and the absorption spectra red shift with the increase in the number of halogen atoms. The defect perovskites are good candidates for probing the lead-free and high power conversion efficiency of solar cells.展开更多
The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capac...The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t.For small t,three dots form a local spin doublet.As t increases,due to the competition between V and t,there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet.When t is absent,the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage.While for sufficient t,the antiferromagnetic spin correlation between dots is enhanced,and the conductance is strongly suppressed for the bonding state is almost doubly occupied.展开更多
We propose an efficient method for the generation of perfect W states on three microwave superconducting resonators,of which the two nearest neighbors are coupled by a symmetric direct current superconducting quantum ...We propose an efficient method for the generation of perfect W states on three microwave superconducting resonators,of which the two nearest neighbors are coupled by a symmetric direct current superconducting quantum interference device(dc-SQUID).With suitable external magnetic fluxes applied to the dc-SQUID symmetry loops,on-chip tunable interactions between neighboring resonators can be realized,and different perfect W states can be deterministically created on-demand in one step.Numerical simulations show that high-fidelity target states can be generated and our scheme is robust against imperfect parameter tuning and environment-induced decoherence.The present work may have potential applications for implementing quantum computation and quantum information processing based on microwave photons.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11647133 and 11674113)the Natural Science Foundation of Hubei Province,China(Grant Nos.2017CFB740 and 2014CFB631)+1 种基金the Scientific Research Items Foundation of Hubei Educational Committee,China(Grant Nos.Q20141802,Q20161803,B2016091,and D20171803)Hubei Provincial Collaborative Innovation Center for Optoelectronics,China
文摘The electronic structures, magnetic properties, half-metallicity, and mechanical properties of half-Heulser compounds CoCrZ (Z = S, Se, and Te) were investigated using first-principles calculations within generalized gradient approximation based on the density function theory. The half-Heusler compounds show half-metallic properties with a half-metallic gap of 0.15 eV for CoCrS, 0.10 eV for CoCrSe, and 0.31 eV for CoCrTe at equilibrium lattice constant, respectively. The total magnetic moments are 3.00/-tB per formula unit, which agrees well with the Slater-Pauling rule. The half-metallicity, elastic constants, bulk modulus, shear modulus, Pough's ratio, Frantesvich ratio, Young's modulus, Poisson's ratio, and Debye temperature at equilibrium lattice constant and versus lattice constants are reported for the first time. The results indicate that the half-Heulser compounds CoCrZ (Z = S, Se, and Te) maintain the perfect half-metallic and mechanical stability within the lattice constants range of 5.18-5.43 A for CoCrS, 5.09-5.61 A for CoCrSe, and 5.17-6.42 A for CoCrTe, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51572219 and 11447030)the Natural Science Foundation of Shaanxi Province of China(Grant No.2015JM1018)Graduate’s Innovation Fund of Northwest University of China(Grant No.YJG15007)
文摘The mechanical properties, thermal properties, electronic structures, and optical properties of the defect perovskites Cs2SnX6(X = Cl, Br, I) were investigated by first-principles calculation using PBE and HSE06 hybrid functional. The optic band gaps based on HSE06 are 3.83 eV for Cs2SnCl6, 2.36 eV for Cs2SnBr6, and 0.92 eV for Cs2SnI6, which agree with the experimental results. The Cs2SnCl6, Cs2SnBr6, and Cs2SnI6 are mechanically stable and they are all anisotropic and ductile in nature. Electronic structures calculations show that the conduction band consists mainly of hybridization between the halogen p orbitals and Sn 5s orbitals, whereas the valence band is composed of the halogen p orbitals. Optic properties indicate that these three compounds exhibit good optical absorption in the ultraviolet region, and the absorption spectra red shift with the increase in the number of halogen atoms. The defect perovskites are good candidates for probing the lead-free and high power conversion efficiency of solar cells.
基金supported by the National Natural Science Foundation of China(Grant Nos.10874132 and 11174228)the Doctoral Scientific Research Foundation of HUAT(Grant No.BK201407)One of the authors(Huang Hai-Ming)supported by the Scientific Research Items Foundation of Educational Committee of Hubei Province,China(Grant No.Q20131805)
文摘The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t.For small t,three dots form a local spin doublet.As t increases,due to the competition between V and t,there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet.When t is absent,the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage.While for sufficient t,the antiferromagnetic spin correlation between dots is enhanced,and the conductance is strongly suppressed for the bonding state is almost doubly occupied.
基金Project supported by the National Natural Science Foundation of China(Grant No.12174300)the Natural Science Foundation of Hubei Province of China(Grant No.2020CFB748)+2 种基金the Natural Science Foundation of Shandong Province of China(Grant Nos.ZR2021MA042 and ZR2021MA078)the Program for Science and Technology Innovation Team in Colleges of Hubei Province of China(Grant No.T2021012)the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology(Grant Nos.BK202113,BK201906,and BK202008)。
文摘We propose an efficient method for the generation of perfect W states on three microwave superconducting resonators,of which the two nearest neighbors are coupled by a symmetric direct current superconducting quantum interference device(dc-SQUID).With suitable external magnetic fluxes applied to the dc-SQUID symmetry loops,on-chip tunable interactions between neighboring resonators can be realized,and different perfect W states can be deterministically created on-demand in one step.Numerical simulations show that high-fidelity target states can be generated and our scheme is robust against imperfect parameter tuning and environment-induced decoherence.The present work may have potential applications for implementing quantum computation and quantum information processing based on microwave photons.