本文对非均质地基弹性薄板的静力、自由振动和动态响应进行了详细的研究。在静力和动力分析中统一应用薄板静力弯曲的奇性控制方程的基本解作为其 Green 函数,避免应用复杂的动力问题基本解,使动力分析大为简化。本方法是一种特殊的边...本文对非均质地基弹性薄板的静力、自由振动和动态响应进行了详细的研究。在静力和动力分析中统一应用薄板静力弯曲的奇性控制方程的基本解作为其 Green 函数,避免应用复杂的动力问题基本解,使动力分析大为简化。本方法是一种特殊的边界元法。它不须计算奇异积分,能分析具有任意边界形状和任意边界条件的非均质地基弹性薄板,还能方便地分析单点或多点支承板以及连续板。算例表明本方法兼具计算量小而精度高等优点。展开更多
文摘本文对非均质地基弹性薄板的静力、自由振动和动态响应进行了详细的研究。在静力和动力分析中统一应用薄板静力弯曲的奇性控制方程的基本解作为其 Green 函数,避免应用复杂的动力问题基本解,使动力分析大为简化。本方法是一种特殊的边界元法。它不须计算奇异积分,能分析具有任意边界形状和任意边界条件的非均质地基弹性薄板,还能方便地分析单点或多点支承板以及连续板。算例表明本方法兼具计算量小而精度高等优点。