提出了基于子词的双层CRFs(conditional random fields)中文分词方法,旨在解决中文分词中切分歧义与未登录词的问题.该方法是建立在基于子词的序列标注模型上.方法第1层利用基于字CRFs模型来识别待测语料中的子词,这样做是为了减少子词...提出了基于子词的双层CRFs(conditional random fields)中文分词方法,旨在解决中文分词中切分歧义与未登录词的问题.该方法是建立在基于子词的序列标注模型上.方法第1层利用基于字CRFs模型来识别待测语料中的子词,这样做是为了减少子词的跨越标记错误和增加子词识别的精确率;第2层利用CRFs模型学习基于子词的序列标注,对第1层的输出进行测试,进而得到分词结果.在2006年SIGHAN Bakeoff的中文简体语料上进行了测试,包括UPUC和MSRA语料,分别在F值上达到了93.3%和96.1%的精度.实验表明,基于子词的双层CRFs模型能够更加有效地利用子词来提高中文分词的精度.展开更多
采用递增式学习策略优化条件随机域(conditional random fields,CRF)的特征模板以提高中文地名的识别效果,结合语言学相关知识构建规则库,以弥补机器学习模型获取知识不够全面导致召回率偏低的不足,最终实现了CRF与规则相结合的中文地...采用递增式学习策略优化条件随机域(conditional random fields,CRF)的特征模板以提高中文地名的识别效果,结合语言学相关知识构建规则库,以弥补机器学习模型获取知识不够全面导致召回率偏低的不足,最终实现了CRF与规则相结合的中文地名识别系统.实验结果表明,采用CRF与规则相结合的方法识别中文文本中的地名是有效的,对Bakeoff2007NER任务的MSRA语料进行开放测试,召回率、精确率和F值分别为94.67%、92.35%和93.50%.展开更多
文摘提出了基于子词的双层CRFs(conditional random fields)中文分词方法,旨在解决中文分词中切分歧义与未登录词的问题.该方法是建立在基于子词的序列标注模型上.方法第1层利用基于字CRFs模型来识别待测语料中的子词,这样做是为了减少子词的跨越标记错误和增加子词识别的精确率;第2层利用CRFs模型学习基于子词的序列标注,对第1层的输出进行测试,进而得到分词结果.在2006年SIGHAN Bakeoff的中文简体语料上进行了测试,包括UPUC和MSRA语料,分别在F值上达到了93.3%和96.1%的精度.实验表明,基于子词的双层CRFs模型能够更加有效地利用子词来提高中文分词的精度.
文摘采用递增式学习策略优化条件随机域(conditional random fields,CRF)的特征模板以提高中文地名的识别效果,结合语言学相关知识构建规则库,以弥补机器学习模型获取知识不够全面导致召回率偏低的不足,最终实现了CRF与规则相结合的中文地名识别系统.实验结果表明,采用CRF与规则相结合的方法识别中文文本中的地名是有效的,对Bakeoff2007NER任务的MSRA语料进行开放测试,召回率、精确率和F值分别为94.67%、92.35%和93.50%.