随着互联网和广告平台的飞速发展,面对海量的广告信息,为了提升用户点击率,提出一种改进的基于组合结构的逻辑回归点击预测算法LRCS(Logical Regression of Combination Structure)。该算法基于不同类别特征广告受众可能不同的特点,首先...随着互联网和广告平台的飞速发展,面对海量的广告信息,为了提升用户点击率,提出一种改进的基于组合结构的逻辑回归点击预测算法LRCS(Logical Regression of Combination Structure)。该算法基于不同类别特征广告受众可能不同的特点,首先,采用FM进行特征组合,产生两类组合特征;其次,将一类特征组合作为聚类算法的输入进行聚类;最后,将另一类特征组合输入由聚类产生的分段GBDT+逻辑回归组合的模型中进行预测。在两个公开数据集中进行了多角度验证,结果表明与其他几类常用的点击预测算法相比,LRCS在点击预测上有一定的性能提升。展开更多
为了提升变电站巡检机器人对自身所处环境的理解能力,将深度学习技术应用于变电站巡检机器人对道路场景的识别中,提出了一种全卷积道路场景识别网络(road scene recognition net,RSRNet)。该网络主要由相对浅层的编码网络和镜像结构与...为了提升变电站巡检机器人对自身所处环境的理解能力,将深度学习技术应用于变电站巡检机器人对道路场景的识别中,提出了一种全卷积道路场景识别网络(road scene recognition net,RSRNet)。该网络主要由相对浅层的编码网络和镜像结构与跳层融合结构相结合的解码网络组成,通过编码网络提取图像特征后由解码网络识别出图像目标信息。通过实验表明,本文提出的网络在同类型网络中识别精度及效率更高,同时在实际变电站场景中也表现出了优良的场景识别性能。展开更多
文摘随着互联网和广告平台的飞速发展,面对海量的广告信息,为了提升用户点击率,提出一种改进的基于组合结构的逻辑回归点击预测算法LRCS(Logical Regression of Combination Structure)。该算法基于不同类别特征广告受众可能不同的特点,首先,采用FM进行特征组合,产生两类组合特征;其次,将一类特征组合作为聚类算法的输入进行聚类;最后,将另一类特征组合输入由聚类产生的分段GBDT+逻辑回归组合的模型中进行预测。在两个公开数据集中进行了多角度验证,结果表明与其他几类常用的点击预测算法相比,LRCS在点击预测上有一定的性能提升。
文摘为了提升变电站巡检机器人对自身所处环境的理解能力,将深度学习技术应用于变电站巡检机器人对道路场景的识别中,提出了一种全卷积道路场景识别网络(road scene recognition net,RSRNet)。该网络主要由相对浅层的编码网络和镜像结构与跳层融合结构相结合的解码网络组成,通过编码网络提取图像特征后由解码网络识别出图像目标信息。通过实验表明,本文提出的网络在同类型网络中识别精度及效率更高,同时在实际变电站场景中也表现出了优良的场景识别性能。