高质量AlN薄膜对制造高性能深紫外器件非常重要,但是目前还很难使用大型工业MOCVD生长出高质量的AlN薄膜。采用磁控溅射制备了不同厚度的用作成核层的AlN薄膜,使用大型工业MOCVD直接在成核层上高温生长AlN外延层,研究了不同成核层对AlN...高质量AlN薄膜对制造高性能深紫外器件非常重要,但是目前还很难使用大型工业MOCVD生长出高质量的AlN薄膜。采用磁控溅射制备了不同厚度的用作成核层的AlN薄膜,使用大型工业MOCVD直接在成核层上高温生长AlN外延层,研究了不同成核层对AlN外延层质量的影响。通过扫描电子显微镜和原子力显微镜对成核层AlN薄膜的表面形貌进行表征;使用高分辨X射线衍射仪对AlN外延层晶体质量进行表征,结果表明:在溅射成核层上生长的AlN外延层的晶体质量有显著提高。使用大型工业MOCVD在蓝宝石衬底上成功制备出中心波长为282 nm的可商用深紫外LED,在注入电流为20 m A时,单颗深紫外LED芯片的光输出功率达到了1.65 m W,对应的外量子效率为1.87%,饱和光输出功率达到4.31 mW。展开更多
To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and ...To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications.展开更多
Thick GaN films with high quality are directly grown on sapphire in a home-built vertical hydride vapour phase epitaxy (HVPE) reactor. The optical and structural properties of large scale columnar domains near the i...Thick GaN films with high quality are directly grown on sapphire in a home-built vertical hydride vapour phase epitaxy (HVPE) reactor. The optical and structural properties of large scale columnar domains near the interface are studied using cathodoluminescence and micro-Raman scattering. These columnar domains show a strong emission intensity due to extremely high free carrier concentration up to 2 × 10^19 cm^-3, which are related with impurities trapped in structural defects. The compressive stress in GaN film clearly decreases with increasing distance from interface. The quasi-continuous columnar domains play an important role in the stress relaxation for the upper high quality layer.展开更多
Thick GaN films of high quality are directly grown on wet-etching patterned sapphire in a vertical hydride vapour phase epitaxy reactor. The optical and structural properties of GaN films are studied using scanning el...Thick GaN films of high quality are directly grown on wet-etching patterned sapphire in a vertical hydride vapour phase epitaxy reactor. The optical and structural properties of GaN films are studied using scanning electronic microscopy and cathodoluminescence. Test results show that initial growth of hydride vapour phase epitaxy GaN occurs not only on the mesas but also on the two asymmetric sidewalls of the V-shaped grooves without selectivity. After the two-step coalescence near the interface, the GaN films near the surface keep on growing along the direction perpendicular to the long sidewall. Based on Raman results, GaN of the coalescence region in the grooves has the maximum residual stress and poor crystalline quality over the whole GaN film, and the coalescence process can release the stress. Therefore, stress-free thick GaN films are prepared with smooth and crack-free surfaces by this particular growth mode on wet-etching patterned sapphire substrates.展开更多
Graphene on gallium nitride (GaN) will be quite useful when the graphene is used as transparent electrodes to improve the performance of gallium nitride devices. In this work, we report the direct synthesis of graph...Graphene on gallium nitride (GaN) will be quite useful when the graphene is used as transparent electrodes to improve the performance of gallium nitride devices. In this work, we report the direct synthesis of graphene on GaN without an extra catalyst by chemical vapor deposition. Raman spectra indicate that the graphene films are uniform and about 5-6 layers in thickness. Meanwhile, the effects of growth temperatures on the growth of graphene films are systematically studied, of which 950 ℃ is found to be the optimum growth temperature. The sheet resistance of the grown graphene is 41.1 Ω/square, which is close to the lowest sheet resistance of transferred graphene reported. The mechanism of graphene growth on GaN is proposed and discussed in detail. XRD spectra and photoluminescence spectra indicate that the quality of GaN epi-layers will not be affected after the growth of graphene.展开更多
Phonons are the primary heat carriers in non-metallic solids.In compositionally heterogeneous materials,the thermal properties are believed to be mainly governed by the disrupted phonon transport due to mass disorder ...Phonons are the primary heat carriers in non-metallic solids.In compositionally heterogeneous materials,the thermal properties are believed to be mainly governed by the disrupted phonon transport due to mass disorder and strain fluctuations,while the effects of compositional fluctuation induced local phonon states are usually ignored.Here,by scanning transmission electron microscopy electron energy loss spectroscopy and sophisticated calculations,we identify the vibrational properties of ingredient-dependent interface phonon modes in Alx Ga1-x N and quantify their various contributions to the local interface thermal conductance.We demonstrate that atomic-scale compositional fluctuation has significant influence on the vibrational thermodynamic properties,highly affecting the mode ratio and vibrational amplitude of interface phonon modes and subsequently redistributing their modal contribution to the interface thermal conductance.Our work provides fundamental insights into understanding of local phonon-boundary interactions in nanoscale inhomogeneities,which reveal new opportunities for optimization of thermal properties via engineering ingredient distribution.展开更多
Wafer-scale SiO2 photonic crystal (PhC) patterns (SiO2 air-hole PhC, SiO2-pillar PhC) on indium tin oxide (ITO) layer of GaN-based light-emitting diode (LED) are fabricated via novel nanospherical-lens lithogr...Wafer-scale SiO2 photonic crystal (PhC) patterns (SiO2 air-hole PhC, SiO2-pillar PhC) on indium tin oxide (ITO) layer of GaN-based light-emitting diode (LED) are fabricated via novel nanospherical-lens lithography. Nanoscale polystyrene spheres are self-assembled into a hexagonal closed-packed monolayer array acting as convex lens for expo- sure using conventional lithography instrument. The light output power is enhanced by as great as 40.5% and 61% over those of as-grown LEDs, for SiO2-hole PhC and SiO2-pillar PhC LEDs, respectively. No degradation to LED electrical properties is found due to the fact that SiO2 PhC structures are fabricated on ITO current spreading electrode. For SiO2- pillar PhC LEDs, which have the largest light output power in all LEDs, no dry etching, which would introduce etching damage, was involved. Our method is demonstrated to be a simple, low cost, and high-yield technique for fabricating the PhC LEDs. Furthermore, the finite difference time domain simulation is also performed to further reveal the emission characteristics of LEDs with PhC structures.展开更多
Undoped AlInGaN epilayers on GaN templates with different hydrogen(H_(2))and nitrogen(N_(2))carrier gas ratios(1:8,2:8,and 3:8 as samples 1,2 and 3,respectively)were grown.When the flow ratio of H_(2) and N_(2) rises ...Undoped AlInGaN epilayers on GaN templates with different hydrogen(H_(2))and nitrogen(N_(2))carrier gas ratios(1:8,2:8,and 3:8 as samples 1,2 and 3,respectively)were grown.When the flow ratio of H_(2) and N_(2) rises from 1:8 to 3:8,an indium composition decrease from 3%to 1.2%is observed while the aluminum content stays constant at any flow ratio.Due to the quantum-dot-like effect,photoluminescence intensity is enhanced in the sample with the low carrier gas flow ratio of H_(2)/N_(2).However,the potential well caused by indium uneven distribution is nonuniform,which is more severe in the sample with carrier gas flow ratio 1:8.The process of carrier transfer from shallow to deep potential wells would be more difficult to accomplish,resulting in the reduction of the photoluminescence intensity.This is found to be consistent with the carriers'lifetime with the help of time-resolved photoluminescence.展开更多
We clarify the effect of the stress in GaN templates on the subsequent AIlnGaN deposition by simply growing 150nm AIInGaN on a 30μm GaN template (sample 1) prepared by hydride vapor phase epitaxy and a 2.3μm thin ...We clarify the effect of the stress in GaN templates on the subsequent AIlnGaN deposition by simply growing 150nm AIInGaN on a 30μm GaN template (sample 1) prepared by hydride vapor phase epitaxy and a 2.3μm thin control GaN template (sample 2) prepared by metalorganic chemical vapor deposition. X-ray diffraction and secondary iron mass spectroscopy measurements reveal the stress states (tensile stress and full relaxed for samples 1 and 2, respectively) and compositions (Al0.169In0.01 Ga0.821N, Al0.171In0.006 Ga0.823N for samples 1 and 2, respectively) of AlInGaN. By carefully eliminating other possible factor, as template surface roughness, it is concluded that different stress states of AlInGaN should stem from different stress states of GaN templates.展开更多
文摘高质量AlN薄膜对制造高性能深紫外器件非常重要,但是目前还很难使用大型工业MOCVD生长出高质量的AlN薄膜。采用磁控溅射制备了不同厚度的用作成核层的AlN薄膜,使用大型工业MOCVD直接在成核层上高温生长AlN外延层,研究了不同成核层对AlN外延层质量的影响。通过扫描电子显微镜和原子力显微镜对成核层AlN薄膜的表面形貌进行表征;使用高分辨X射线衍射仪对AlN外延层晶体质量进行表征,结果表明:在溅射成核层上生长的AlN外延层的晶体质量有显著提高。使用大型工业MOCVD在蓝宝石衬底上成功制备出中心波长为282 nm的可商用深紫外LED,在注入电流为20 m A时,单颗深紫外LED芯片的光输出功率达到了1.65 m W,对应的外量子效率为1.87%,饱和光输出功率达到4.31 mW。
基金Project supported by the National Key R&D Program of China (Grant No. 2019YFA0708202)the National Natural Science Foundation of China (Grant Nos. 11974023, 52021006, 61974139, 12074369, and 12104017)+1 种基金the “2011 Program” from the Peking–Tsinghua–IOP Collaborative Innovation Center of Quantum Matterthe Youth Supporting Program of Institute of Semiconductors
文摘To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications.
文摘Thick GaN films with high quality are directly grown on sapphire in a home-built vertical hydride vapour phase epitaxy (HVPE) reactor. The optical and structural properties of large scale columnar domains near the interface are studied using cathodoluminescence and micro-Raman scattering. These columnar domains show a strong emission intensity due to extremely high free carrier concentration up to 2 × 10^19 cm^-3, which are related with impurities trapped in structural defects. The compressive stress in GaN film clearly decreases with increasing distance from interface. The quasi-continuous columnar domains play an important role in the stress relaxation for the upper high quality layer.
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2006AA03A143, the National Natural Science Foundation of China under Grant No 60806001, and the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No ISCAS2008T03.
文摘Thick GaN films of high quality are directly grown on wet-etching patterned sapphire in a vertical hydride vapour phase epitaxy reactor. The optical and structural properties of GaN films are studied using scanning electronic microscopy and cathodoluminescence. Test results show that initial growth of hydride vapour phase epitaxy GaN occurs not only on the mesas but also on the two asymmetric sidewalls of the V-shaped grooves without selectivity. After the two-step coalescence near the interface, the GaN films near the surface keep on growing along the direction perpendicular to the long sidewall. Based on Raman results, GaN of the coalescence region in the grooves has the maximum residual stress and poor crystalline quality over the whole GaN film, and the coalescence process can release the stress. Therefore, stress-free thick GaN films are prepared with smooth and crack-free surfaces by this particular growth mode on wet-etching patterned sapphire substrates.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274040 and 51102226)the National Basic Research Program of China(Grant No.2011CB301904)+2 种基金the National High Technology Program of China(Grant Nos.2011AA03A103 and 2011AA03A105)the National Science Foundation of China(Grant Nos.10774032 and 90921001)the Key Knowledge Innovation Project of the Chinese Academy of Sciences on Water Science Research,Instrument Developing Project of the Chinese Academy of Sciences(Grant No.Y2010031)
文摘Graphene on gallium nitride (GaN) will be quite useful when the graphene is used as transparent electrodes to improve the performance of gallium nitride devices. In this work, we report the direct synthesis of graphene on GaN without an extra catalyst by chemical vapor deposition. Raman spectra indicate that the graphene films are uniform and about 5-6 layers in thickness. Meanwhile, the effects of growth temperatures on the growth of graphene films are systematically studied, of which 950 ℃ is found to be the optimum growth temperature. The sheet resistance of the grown graphene is 41.1 Ω/square, which is close to the lowest sheet resistance of transferred graphene reported. The mechanism of graphene growth on GaN is proposed and discussed in detail. XRD spectra and photoluminescence spectra indicate that the quality of GaN epi-layers will not be affected after the growth of graphene.
基金the National Key R&D Program of China(Grant No.2019YFA0708200)the National Natural Science Foundation of China(Grant Nos.52125307,11974023,12104017,and 52021006)+1 种基金the“2011 Program”from the Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum MatterYouth Innovation Promotion Association,CAS。
文摘Phonons are the primary heat carriers in non-metallic solids.In compositionally heterogeneous materials,the thermal properties are believed to be mainly governed by the disrupted phonon transport due to mass disorder and strain fluctuations,while the effects of compositional fluctuation induced local phonon states are usually ignored.Here,by scanning transmission electron microscopy electron energy loss spectroscopy and sophisticated calculations,we identify the vibrational properties of ingredient-dependent interface phonon modes in Alx Ga1-x N and quantify their various contributions to the local interface thermal conductance.We demonstrate that atomic-scale compositional fluctuation has significant influence on the vibrational thermodynamic properties,highly affecting the mode ratio and vibrational amplitude of interface phonon modes and subsequently redistributing their modal contribution to the interface thermal conductance.Our work provides fundamental insights into understanding of local phonon-boundary interactions in nanoscale inhomogeneities,which reveal new opportunities for optimization of thermal properties via engineering ingredient distribution.
基金Project supported by the National Basic Research Program of China (Grant No.2011CB301902)
文摘Wafer-scale SiO2 photonic crystal (PhC) patterns (SiO2 air-hole PhC, SiO2-pillar PhC) on indium tin oxide (ITO) layer of GaN-based light-emitting diode (LED) are fabricated via novel nanospherical-lens lithography. Nanoscale polystyrene spheres are self-assembled into a hexagonal closed-packed monolayer array acting as convex lens for expo- sure using conventional lithography instrument. The light output power is enhanced by as great as 40.5% and 61% over those of as-grown LEDs, for SiO2-hole PhC and SiO2-pillar PhC LEDs, respectively. No degradation to LED electrical properties is found due to the fact that SiO2 PhC structures are fabricated on ITO current spreading electrode. For SiO2- pillar PhC LEDs, which have the largest light output power in all LEDs, no dry etching, which would introduce etching damage, was involved. Our method is demonstrated to be a simple, low cost, and high-yield technique for fabricating the PhC LEDs. Furthermore, the finite difference time domain simulation is also performed to further reveal the emission characteristics of LEDs with PhC structures.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2011AA03A105.
文摘Undoped AlInGaN epilayers on GaN templates with different hydrogen(H_(2))and nitrogen(N_(2))carrier gas ratios(1:8,2:8,and 3:8 as samples 1,2 and 3,respectively)were grown.When the flow ratio of H_(2) and N_(2) rises from 1:8 to 3:8,an indium composition decrease from 3%to 1.2%is observed while the aluminum content stays constant at any flow ratio.Due to the quantum-dot-like effect,photoluminescence intensity is enhanced in the sample with the low carrier gas flow ratio of H_(2)/N_(2).However,the potential well caused by indium uneven distribution is nonuniform,which is more severe in the sample with carrier gas flow ratio 1:8.The process of carrier transfer from shallow to deep potential wells would be more difficult to accomplish,resulting in the reduction of the photoluminescence intensity.This is found to be consistent with the carriers'lifetime with the help of time-resolved photoluminescence.
文摘We clarify the effect of the stress in GaN templates on the subsequent AIlnGaN deposition by simply growing 150nm AIInGaN on a 30μm GaN template (sample 1) prepared by hydride vapor phase epitaxy and a 2.3μm thin control GaN template (sample 2) prepared by metalorganic chemical vapor deposition. X-ray diffraction and secondary iron mass spectroscopy measurements reveal the stress states (tensile stress and full relaxed for samples 1 and 2, respectively) and compositions (Al0.169In0.01 Ga0.821N, Al0.171In0.006 Ga0.823N for samples 1 and 2, respectively) of AlInGaN. By carefully eliminating other possible factor, as template surface roughness, it is concluded that different stress states of AlInGaN should stem from different stress states of GaN templates.