We perform a first-principles study of electronic structure and magnetism of C-doped zinc-blende ZnO using the full-potential linearized augmented plane wave method. Results show that C-doped zinc-blende ZnO exhibits ...We perform a first-principles study of electronic structure and magnetism of C-doped zinc-blende ZnO using the full-potential linearized augmented plane wave method. Results show that C-doped zinc-blende ZnO exhibits half-metallic ferromagnetism with a stable ferromagnetic ground state. The calculated magnetic moment of the 32-atom supercell containing one C dopant is 2.00 μ B , and the C dopant contributes most. The calculated low formation energy suggests that C-doped zinc-blende ZnO is energetically stable. The hole-mediated double exchange mechanism can be used to explain the ferromagnetism in C-doped zinc-blende ZnO.展开更多
We investigate the distribution of the entanglement of the one-dimensional single-hole Hubbard model (HM) and study the relationship between the entanglement and quantum phase transition in the model. The von Neuman...We investigate the distribution of the entanglement of the one-dimensional single-hole Hubbard model (HM) and study the relationship between the entanglement and quantum phase transition in the model. The von Neumann entropy of a block with neighbouring spins L for a single-hole HM is calculated using the densitymatrix renormalization group. The distributions of the entanglement entropy in the ground state, as a function of block length, show a dramatic effect, i.e. effectively decoupling with the centres, no matter how the Coulomb interaction u 〉0 or u 〈0. Contrarily, for the Coulomb interaction u = 0 or close to zero, the entanglement entropy in the single-hole model reaches a saturation value for a certain block size. For a fixed size L = 40, the ground state entanglement entropy measure, as a function of u1 shows a peak corresponding to the critical quantum phase transition.展开更多
基金Project supported by the National Natural Science Foundation of China (Grants Nos. 11004066 and 11074081)the Research Foundation for the Doctoral Program of Higher Education of China (Grant Nos. 20100142120080 and 20090142110063)
文摘We perform a first-principles study of electronic structure and magnetism of C-doped zinc-blende ZnO using the full-potential linearized augmented plane wave method. Results show that C-doped zinc-blende ZnO exhibits half-metallic ferromagnetism with a stable ferromagnetic ground state. The calculated magnetic moment of the 32-atom supercell containing one C dopant is 2.00 μ B , and the C dopant contributes most. The calculated low formation energy suggests that C-doped zinc-blende ZnO is energetically stable. The hole-mediated double exchange mechanism can be used to explain the ferromagnetism in C-doped zinc-blende ZnO.
基金Supported by the National Natural Science Foundation of China under Grant No 10574048.
文摘We investigate the distribution of the entanglement of the one-dimensional single-hole Hubbard model (HM) and study the relationship between the entanglement and quantum phase transition in the model. The von Neumann entropy of a block with neighbouring spins L for a single-hole HM is calculated using the densitymatrix renormalization group. The distributions of the entanglement entropy in the ground state, as a function of block length, show a dramatic effect, i.e. effectively decoupling with the centres, no matter how the Coulomb interaction u 〉0 or u 〈0. Contrarily, for the Coulomb interaction u = 0 or close to zero, the entanglement entropy in the single-hole model reaches a saturation value for a certain block size. For a fixed size L = 40, the ground state entanglement entropy measure, as a function of u1 shows a peak corresponding to the critical quantum phase transition.