期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于植被指数融合的无人机冬小麦LNC反演 被引量:1
1
作者 愿彬彬 汪洋 +4 位作者 武红旗 康镱梁 谷海斌 骆俊腾 王帅帅 《麦类作物学报》 CAS CSCD 北大核心 2024年第8期1063-1073,共11页
为了解无人机遥感平台用于快速、准确地监测冬小麦叶片氮含量(LNC)中的可行性,利用无人机遥感平台获取新疆喀什地区新疆农业科学院小麦育种基地冬小麦冠层光谱图像,分析和筛选可见光植被指数、多光谱植被指数与LNC的相关性,建立融合植... 为了解无人机遥感平台用于快速、准确地监测冬小麦叶片氮含量(LNC)中的可行性,利用无人机遥感平台获取新疆喀什地区新疆农业科学院小麦育种基地冬小麦冠层光谱图像,分析和筛选可见光植被指数、多光谱植被指数与LNC的相关性,建立融合植被指数,比较多元线性回归(MLR)、逐步线性回归(SMLR)、随机森林回归(RF)在冬小麦各生育时期对叶片氮含量的适用性,筛选最优冬小麦叶片氮素含量估测模型。结果表明,小麦LNC与可见光植被指数(ExR、IKAW、VARI)、多光谱植被指数(RVI、RDVI、MSR、NDRE、RERDVI)、融合植被指数(ExR×RERDVI、IKAW×RERDVI和VARI×RERDVI)具有较高相关性,遥感监测效果在抽穗期最佳,灌浆期次之,成熟期最差。以融合植被指数作为自变量,采用随机森林回归模型构建的LNC估测模型在抽穗期的预测精度最佳,建模r^(2)、RMSE和nRMSE分别为0.866、0.95 g·kg^(-1)和6.23%,模型验证r^(2)、RMSE和nRMSE分别为0.71、1.61 g·kg^(-1)和10.83%。这说明基于无人机遥感平台利用融合植被指数能够实现对冬小麦LNC的快速、准确估测。 展开更多
关键词 无人机 冬小麦 叶片氮含量 植被指数 可见光 多光谱
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部